Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Nanoscale ; 11(36): 17084-17092, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31506661

ABSTRACT

Developing economic, effective and stable bifunctional electrocatalysts to achieve sustainable hydrogen production is highly desired. Herein, C-coated CoP hollow microporous nanocages (C-CoP-1/12) are synthesized by calcination of a Prussian blue analog precursor and subsequent phosphorization treatment. Under alkaline condition, the C-CoP-1/12 exhibit splendid electrocatalytic performance with a low overpotential of 173 mV for hydrogen evolution reaction (HER) and 333 mV for oxygen evolution reaction (OER) at a current density of 10 mA cm-2. The C-CoP-1/12 show high electrocatalytic performance for overall water splitting at a low potential of only 1.650 V for the driving current density of 10 mA cm-2, and they exhibit remarkable stability for at least 24 h. The engineering of phosphating is the critical step for the synthesis of pure-phase CoP with hollow nanoarchitecture. Compared with Co2P, CoP possesses lower water dissociation barrier and favorable ΔGH* value according to theoretical calculations, resulting in superior electrocatalytic performance. Such impressive water splitting performance is mainly attributed to the collective effects of metal phosphide with unique electronic structure, the shortened electron transport paths, and the conductive C coating. This strategy is believed to provide a basis for the development of electrode materials with highly efficient electrocatalytic water-splitting capability.

2.
Microsc Microanal ; 25(5): 1155-1159, 2019 10.
Article in English | MEDLINE | ID: mdl-31481138

ABSTRACT

Valence Compton profiles (CPs) of multiwall (MWCNTs) and single-wall carbon nanotubes (SWCNTs) were obtained by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope, a technique known as electron Compton scattering from solids (ECOSS). The experimental MWCNT/SWCNT results were compared with that of graphite. Differences between the valence CPs of MWCNTs and SWCNTs were observed, and the SWCNT CPs indicate a greater delocalization of the ground-state charge density compared to graphite. The results clearly demonstrate the feasibility and potential of the ECOSS technique as a complementary tool for studying the electronic structure of materials with nanoscale spatial resolution.

3.
Nano Lett ; 19(7): 4380-4383, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31084029

ABSTRACT

Nonequilibrium intermetallic phases in the nanoscale were realized by diffusion-controlled solid-state transformation, forming SiO2 supported NPs with Pd core and a CsCl type Pd1M1 shell, where M is Sn or Sb. The core-shell geometry is identified from scanning transmission electron microscopy and infrared spectroscopy and the crystal structure is confirmed from in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. The highly symmetric Pd1M1 intermetallic phase has not been reported previously and contains catalytic ensembles with high selectivity toward dehydrogenation of propane. The kinetically limited solid-state reaction is generally applicable to nanoparticle synthesis and could produce materials with desired structures and properties beyond conventional structural limits.

4.
Sci Rep ; 9(1): 3784, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30846782

ABSTRACT

The electron momentum density and sp2/sp3 ratio of carbon materials in the thermal transformation of detonation nanodiamonds (ND) into carbon nano-onions are systematically studied by electron energy-loss spectroscopy (EELS). Electron energy-loss near-edge structures of the carbon K-ionization in the electron energy-loss spectroscopy are measured to determine the sp2 content of the ND-derived samples. We use the method developed by Titantah and Lamoen, which is based on the ability to isolate the π* spectrum and has been shown to give reliable and accurate results. Compton profiles (CPs) of the ND-derived carbon materials are obtained by performing EELS on the electron Compton scattering region. The amplitude of the CPs at zero momentum increases with increasing annealing temperature above 500 °C. The dramatic changes occur in the temperature range of 900-1300 °C, which indicates that the graphitization process mainly occurs in this annealing temperature region. Our results complement the previous work on the thermal transformation of ND-derived carbon onions and provide deeper insight into the evolution of the electronic properties in the graphitization process.

5.
ACS Appl Mater Interfaces ; 11(1): 706-713, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30499295

ABSTRACT

The interface at the metal oxide-carbon hybrid heterojunction is the source to the well-known "synergistic effect" in catalysis. Understanding the structure-function properties is key for designing more advanced catalyst-support systems. Using a model MnIII-O x single-layer catalyst on carbon, we herein report a full elucidation to the catalytic synergism at the hybrid heterojunction in the oxygen reduction reaction (ORR). The successful fabrication of the single-layer catalyst from bottom-up is fully characterized by the X-ray absorption fine structure and high-resolution transmission electron microscopy. For oxygen electrocatalysis over this model hybrid heterostructure, our results, from both theory and experiment, show that the synergistic ORR truly undergoes a cooperated two-step electrocatalysis with catalytic promotion (Δ Eonset = 60 mV) near the heterojunction and over the single-layer catalyst through an interfacial electronic interplay, rather than an abstruse transition towards a one-step dissociative pathway. Finally, we report a superior peroxide-reducing activity of 432.5 mA cm-2 mg(M)-1 over the MnIII-O x single-layer.

6.
J Am Chem Soc ; 140(44): 14717-14724, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30359010

ABSTRACT

Nanocarbon can promote robust and efficient electrocatalytic water oxidation through active surface oxygen moieties. The recent mechanistic understandings (e.g., active sites) of metal-free carbon catalysts in oxygen evolution reaction (OER), however, are still rife with controversies. In this work, we describe a facile protocol in which eight kinds of aromatic molecules with designated single oxygen species were used as model structures to investigate the explicit roles of each common oxygen group in OER at a molecular level. These model structures were decorated onto typical nanocarbon surfaces like onion-like carbons (OLC) or multiwalled carbon nanotubes (MWCNT) to build aromatic molecule-modified carbon systems. We show that edge (including zigzag and armchair) quinones in a conjugated π network are the true active centers, and the roles of ether and carboxyl groups are excluded in the OER process. The plausible rate-determining step could be singled out by H/D kinetic isotope effects. The turnover frequency per C═O (∼0.323 s-1 at η = 340 mV) in 0.1 M KOH and the optimized current density (10 mA/cm2 at 1.58 V vs RHE) of quinone-modified carbon systems are comparable to those of promising metal-based catalysts.

7.
Chem Commun (Camb) ; 54(8): 864-875, 2018 Jan 23.
Article in English | MEDLINE | ID: mdl-29322143

ABSTRACT

Recent progress from first principles computational studies is presented for catalytic properties of nanostructured carbon catalysts in the oxidative dehydrogenation (ODH) reaction of short alkanes. Firstly, a brief introduction is given on the development of carbon catalysts in ODH since 1970. Oxygen functional groups have pivotal importance for ODH on nanostructured carbon catalysts. We discuss the oxidation process by HNO3 on pristine and defective carbon materials. The interactions between the oxygen molecule (oxidant) and the nanostructured carbon catalysts are quantitatively calibrated. Moreover the different nucleophilic abilities of oxygen functional groups are carefully compared and the strongest nucleophilic sites are proposed. The active sites and detailed reaction pathway are revealed from several computational studies. Diketone/quinone groups are generally considered to be the active centers in ODH. A reaction pathway via radical formation is considered as the favorable path. Furthermore, single ketone and carbon sites are verified to be active in ODH from the analysis of aromaticity. Heteroatom doping effects in ODH are examined. Nitrogen doping is found to be very reactive towards oxygen molecule activation. Other dopants such as boron, phosphorous and sulfur also have positive effects on the reactivity of ODH. Extensive calculations suggest that the BEP relation is applicable for the doped nanostructured carbon catalysts. In the end, an outlook for the future direction of the computational study is supplied.

8.
Chem Sci ; 8(7): 5126-5131, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28970899

ABSTRACT

The chemoselective hydrogenation of substituted nitroarenes to form the corresponding functionalized anilines is an important type of reaction in fine chemistry, and the chemoselectivity is critically dependent on the rational design of the catalysts. This reaction has rarely been accomplished over high-loading Pt catalysts due to the formation of Pt crystals. Here, for the first time, we report that alkali metals (Li+, Na+, K+, etc.) can transform the non-selective high loading Pt/FeO x catalyst to a highly chemoselective one. The best result was obtained over a 5% Na-2.16% Pt/FeO x catalyst, which enhanced the chemoselectivity from 66.4% to 97.4% while the activity remained almost unchanged for the probe reaction of 3-nitrostyrene hydrogenation to 3-aminostyrene. Using aberration-corrected HAADF-STEM, in situ XAS, 57 and Fe Mössbauer and DRIFT spectroscopy, the active site of a Pt-O-Na-O-Fe-like species was proposed, which ensures that the Pt centers are isolated and positively charged for the preferential adsorption of the -NO2 group.

9.
Nanoscale ; 9(39): 15033-15043, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-28967010

ABSTRACT

Although nanosized Au clusters have been well developed for many applications, fundamental understanding of their adsorption/activation behaviors in catalytic applications is still lacking, especially when other elements provide promotion or hybridization functions. Au hybridized with Cu element is a highly investigated system; Cu is in the same element group as Au and thus displays similar physicochemical properties. However, their hybrids are not well understood in terms of their chemical states and adsorption/activation properties. In this work, typical γ-Al2O3-supported Au and CuO as well as Au-CuO nanoparticles were prepared and characterized to explore their adsorption/activation properties in depth using CO as a probe molecule using advanced techniques, such as XPS, HR-TEM, temperature programmed experiments and operando DRIFT combined with mass spectra. It was found that gold and copper can both act as active sites during CO adsorption and activation. The CO-TPD and operando DRIFT results also revealed that CO molecules were able to react with surface oxygenated species, resulting in the direct formation of CO2 over the three samples in the absence of gaseous O2. The gold step sites (Austep) participated more readily in the reaction, especially under gaseous O2-free conditions. During adsorption, CO molecules were more preferentially adsorbed on Au0 sites at lower temperature comparing with those on the Cu0 sites. However, competitive adsorption occurred between CO adsorbed on Au0 and Cu0 with increased reaction temperature, and the synergy between the Au and Cu compositions was too strong to suppress the adsorption and activation of the CO molecules. The dynamic adsorption equilibrium over 120 °C to 200 °C resulted in the appearance of a hysteresis performance platform.

10.
Sci Adv ; 3(10): e1700231, 2017 10.
Article in English | MEDLINE | ID: mdl-29043293

ABSTRACT

Supported metal catalysts play a central role in the modern chemical industry but often exhibit poor on-stream stability. The strong metal-support interaction (SMSI) offers a route to control the structural properties of supported metals and, hence, their reactivity and stability. Conventional wisdom holds that supported Au cannot manifest a classical SMSI, which is characterized by reversible metal encapsulation by the support upon high-temperature redox treatments. We demonstrate a classical SMSI for Au/TiO2, evidenced by suppression of CO adsorption, electron transfer from TiO2 to Au nanoparticles, and gold encapsulation by a TiO x overlayer following high-temperature reduction (reversed by subsequent oxidation), akin to that observed for titania-supported platinum group metals. In the SMSI state, Au/TiO2 exhibits markedly improved stability toward CO oxidation. The SMSI extends to Au supported over other reducible oxides (Fe3O4 and CeO2) and other group IB metals (Cu and Ag) over titania. This discovery highlights the general nature of the classical SMSI and unlocks the development of thermochemically stable IB metal catalysts.

11.
Nanoscale ; 9(38): 14317-14321, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28944384

ABSTRACT

Developing highly selective and stable catalysts for acetylene hydrogenation is an imperative task in the chemical industry. Herein, core-shell Pd@carbon nanoparticles supported on carbon nanotubes (Pd@C/CNTs) were synthesized. During the hydrogenation of acetylene, the selectivity of Pd@C/CNTs to ethylene was distinctly improved. Moreover, Pd@C/CNTs showed excellent stability during the hydrogenation reaction.

13.
Chem Asian J ; 12(22): 2876-2883, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28837759

ABSTRACT

Nanocarbon catalysts are green and sustainable alternatives to metal-based catalysts for numerous catalytic transformations. The application of nanocarbons for environmental catalysis is an emerging research discipline and has undergone rapid development in recent years. In this focus review, we provide a critical analysis of state-of-the-art nanocarbon catalysts for three different catalytic desulfurization processes. In particular, we focus on the advantages and limitations as well as the reaction mechanisms of the nanocarbon catalysts at the molecular level.

14.
Nat Commun ; 8: 15938, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28737170

ABSTRACT

For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

15.
ACS Appl Mater Interfaces ; 9(26): 21798-21808, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28589715

ABSTRACT

A new self-propagated flaming (SPF) technique was applied to the synthesis of highly active layered CuO-δ-MnO2 hybrid composites, for the de-polluting catalytic total oxidation of gaseous toluene vapor. Other transition metal oxide-doped MnO2 hybrid composites were also successfully prepared and investigated, ensuring a feasible strategy for the fabrication of various layered MOx-δ-MnO2 (M═Co, Ni, or Zn) hybrids. By changing the molar ratio of the precursors (KMnO4 and acetate salt) and the type of transition metal oxide introduced, it is possible to control the crystal structure and reducibility of the sheetlike hybrid composites as well as the catalytic activity for the total oxidation of toluene. The catalyst sample (CuO-δ-MnO2) with a Mn/Cu molar ratio of 10:1 exhibited the highest catalytic performance, with a lower reaction temperature of 300 °C for complete toluene removal, which was comparable to the reaction temperature for total toluene conversion by the Pt-based catalyst. The SPF technique provides an approach for developing highly efficient catalysts for the complete removal of volatile organic compounds, by allowing the facile and energy-saving fabrication of large quantities of layered CuO-δ-MnO2 hybrids.

16.
ChemSusChem ; 10(15): 3030-3034, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28654724

ABSTRACT

Nitrogen rich carbon nanotubes have been used as a metal free catalyst for the conversion of glycerol into dihydroxyacetone using tert-butyl hydroperoxide as an oxidant. Pyridine nitrogen groups embedded in a carbon matrix are identified as active sites for the reaction. Computational studies have demonstrated that oxidation of pyridine groups to pyridine oxime followed by hydrogen abstraction from secondary alcohol is likely responsible for the oxidation process.


Subject(s)
Glycerol/chemistry , Nanotubes, Carbon/chemistry , Nitrogen/chemistry , Catalysis , Oxidation-Reduction
17.
Angew Chem Int Ed Engl ; 56(10): 2699-2703, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28128489

ABSTRACT

Ammonia is synthesized directly from water and N2 at room temperature and atmospheric pressure in a flow electrochemical cell operating in gas phase (half-cell for the NH3 synthesis). Iron supported on carbon nanotubes (CNTs) was used as the electrocatalyst in this half-cell. A rate of ammonia formation of 2.2×10-3  gNH3 m-2 h-1 was obtained at room temperature and atmospheric pressure in a flow of N2 , with stable behavior for at least 60 h of reaction, under an applied potential of -2.0 V. This value is higher than the rate of ammonia formation obtained using noble metals (Ru/C) under comparable reaction conditions. Furthermore, hydrogen gas with a total Faraday efficiency as high as 95.1 % was obtained. Data also indicate that the active sites in NH3 electrocatalytic synthesis may be associated to specific carbon sites formed at the interface between iron particles and CNT and able to activate N2 , making it more reactive towards hydrogenation.

18.
ChemSusChem ; 10(2): 353-358, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28000383

ABSTRACT

Carbon nanotubes (CNTs) were used in oxidative dehydrogenation (ODH) reactions. Quinone groups on the CNT surface were identified as active sites for the dehydrogenation pathway. Liquid-phase oxidation with HNO3 is one way to generate various oxygen functionalities on the CNT surface but it produces a large amount of acid waste, limiting its industrial application. Here, a facile and efficient oxidative method to prepare highly selective CNT catalysts for ODH of n-butane is reported. Magnesium nitrate salts as precursors were used to produce defect-rich CNTs through solid-phase oxidation. Skeleton defects induced on the CNT surface resulted in the selective formation of quinone groups active for the selective dehydrogenation. The as-prepared catalyst exhibited a considerable selectivity (58 %) to C4 olefins, which is superior to that of CNTs oxidized with liquid HNO3 . Through the introduction of MgO nanoparticles on the CNT surface, the desorption of alkenes can be accelerated dramatically, thus enhancing the selectivity. This study provides an attractive way to develop new nanocarbon catalysts.


Subject(s)
Nanotubes, Carbon/chemistry , Butanes/chemistry , Catalysis , Hydrogenation , Nitric Acid/chemistry , Oxidation-Reduction , Surface Properties
19.
ChemSusChem ; 9(14): 1820-6, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27282126

ABSTRACT

Multi-walled carbon nanotubes (CNTs) were directly used as a sustainable and green catalyst to convert ethanol into acetaldehyde in the presence of molecular oxygen. The C=O groups generated on the nanocarbon surface were demonstrated as active sites for the selective oxidation of ethanol to acetaldehyde. The transformation of disordered carbon debris on the CNT surface to ordered graphitic structures induced by thermal-treatment significantly enhanced the stability of the active C=O groups, and thus the catalytic performance. A high reactivity with approximately 60 % ethanol conversion and 93 % acetaldehyde selectivity was obtained over the optimized CNT catalyst at 270 °C. More importantly, the catalytic performance was quite stable even after 500 h, which is comparable with a supported gold catalyst. The robust catalytic performance displayed the potential application of CNTs in the industrial catalysis field.


Subject(s)
Acetaldehyde/chemistry , Ethanol/chemistry , Nanotubes, Carbon/chemistry , Catalysis , Gases/chemistry , Kinetics , Oxidation-Reduction
20.
Chem Asian J ; 11(11): 1668-71, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27062419

ABSTRACT

It is believed that the oxygen groups on the carbon catalysts are responsible for the observed reactivity for C-H bond activations. On the other hand, the oxygen groups also reduce the aromaticity of the host. The loss of the aromaticity increases reactivities of the carbon atoms and they become the active sites for the C-H bond activation. The newly identified C-C site exhibits the comparable catalytic performance in the oxidative dehydrogenation (ODH) of propane compared with the conventional oxygen groups like quinone and ketone. A series of calculations indicate that the aromaticity might be a useful descriptor for the carbon catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...