Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Inflamm Res ; 73(8): 1267-1282, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844677

ABSTRACT

BACKGROUND: Inflammatory macrophage infiltration plays a critical role in acute kidney disease induced by ischemia-reperfusion (IRI-AKI). Calycosin is a natural flavone with multiple bioactivities. This study aimed to investigate the therapeutic role of calycosin in IRI-AKI and its underlying mechanism. METHODS: The renoprotective and anti-inflammatory effects of calycosin were analyzed in C57BL/6 mice with IRI-AKI and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA-seq was used for mechanism investigation. The molecular target of calycosin was screened by in silico methods and validated by surface plasmon resonance (SPR). Macrophage chemotaxis was analyzed using Transwell and agarose gel spot assays. RESULTS: Calycosin treatment significantly reduced serum creatinine and urea nitrogen and attenuated tubular destruction in IRI-AKI mice. Additionally, calycosin markedly suppressed NF-κB signaling activation and the expression of inflammatory mediators IL-1ß and TNF-α in IRI-AKI kidneys and LPS-stimulated RAW 264.7 cells. Interestingly, RNA-seq revealed calycosin remarkably downregulated chemotaxis-related pathways in RAW 264.7 cells. Among the differentially expressed genes, Ccl2/MCP-1, a critical chemokine mediating macrophage inflammatory chemotaxis, was downregulated in both LPS-stimulated RAW 264.7 cells and IRI-AKI kidneys. Consistently, calycosin treatment attenuated macrophage infiltration in the IRI-AKI kidneys. Importantly, in silico target prediction, molecular docking, and SPR assay demonstrated that calycosin directly binds to macrophage migration inhibitory factor (MIF). Functionally, calycosin abrogated MIF-stimulated NF-κB signaling activation and Ccl2 expression and MIF-mediated chemotaxis in RAW 264.7 cells. CONCLUSIONS: In summary, calycosin attenuates IRI-AKI by inhibiting MIF-mediated macrophage inflammatory chemotaxis, suggesting it could be a promising therapeutic agent for the treatment of IRI-AKI.


Subject(s)
Acute Kidney Injury , Chemotaxis , Isoflavones , Macrophage Migration-Inhibitory Factors , Macrophages , Reperfusion Injury , Animals , Male , Mice , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Chemotaxis/drug effects , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/genetics , Isoflavones/pharmacology , Isoflavones/therapeutic use , Kidney/drug effects , Kidney/pathology , Lipopolysaccharides , Macrophages/drug effects , Mice, Inbred C57BL , NF-kappa B/metabolism , RAW 264.7 Cells , Reperfusion Injury/drug therapy
2.
World J Oncol ; 15(2): 209-222, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38545470

ABSTRACT

Background: DNA damage-induced apoptosis suppressor (DDIAS) has recently been discovered to induce cancer progression, but its functions and mechanisms in glioma have not been well studied. Methods: DDIAS expression in glioma tissues was analyzed by the Gene Expression Profiling Interactive Analysis server (GEPIA) and the Gene Expression database of Normal and Tumor tissue 2 (GENT2) databases. The role of DDIAS in glioma progression was studied by short hairpin RNA (shRNA) targeting DDIAS. The effects of DDIAS on glioma cell viability, cell proliferation, invasion, migration, and tumor sphere formation were determined by cell counting kit-8 (CCK-8), EdU, Transwell, tumor spheroid formation, extreme limiting dilution analysis assays in vitro and xenograft model construction in vivo. In addition, RNA sequencing and further functional experiments were used to analyze the DDIAS regulatory mechanism in glioma. Results: We found that DDIAS was highly expressed in glioma and that upregulated DDIAS indicated poor prognosis. Functionally, DDIAS knockdown inhibited glioma cell viability, cell proliferation, invasion and migration in vitro and tumor growth in vivo. In addition, lymphoid enhancer-binding factor 1 (LEF1) was identified as the downstream effector of DDIAS by RNA sequencing. DDIAS downregulation inhibited LEF1 mRNA and protein expression. The expression of DDIAS and LEF1 was positively correlated, and LEF1 overexpression rescued the inhibitory phenotype induced by DDIAS downregulation. We further showed that DDIAS downregulation inhibited cyclin A1, vimentin and the stemness-related factor CD133 and decreased the sphere formation capability, but these features were rescued by upregulation of LEF1. Conclusion: Taken together, these findings suggest that DDIAS promotes glioma progression and stemness by inducing LEF1 expression, proving that DDIAS may be a potential target for the treatment of glioma.

3.
Adv Sci (Weinh) ; 10(32): e2304360, 2023 11.
Article in English | MEDLINE | ID: mdl-37749872

ABSTRACT

Podocyte injury plays a critical role in the progression of focal segmental glomerulosclerosis (FSGS). Here, it is reported that B-cell translocation gene 2 (Btg2) promotes Adriamycin (ADR)-induced FSGS via Smad3-dependent podocyte-mesenchymal transition. It is found that in FSGS patients and animal models, Btg2 is markedly upregulated by podocytes and correlated with progressive renal injury. Podocyte-specific deletion of Btg2 protected against the onset of proteinuria and glomerulosclerosis in ADR-treated mice along with inhibition of EMT markers such as α-SMA and vimentin while restoring epithelial marker E-cadherin. In cultured MPC5 podocytes, overexpression of Btg2 largely promoted ADR and TGF-ß1-induced EMT and fibrosis, which is further enhanced by overexpressing Btg2 but blocked by disrupting Btg2. Mechanistically, Btg2 is rapidly induced by TGF-ß1 and then bound Smad3 but not Smad2 to promote Smad3 signaling and podocyte EMT, which is again exacerbated by overexpressing Btg2 but blocked by deleting Btg2 in MPC5 podocytes. Interestingly, blockade of Smad3 signaling with a Smad3 inhibitor SIS3 is also capable of inhibiting Btg2 expression and Btg2-mediated podocyte EMT, revealing a TGF-ß/Smad3-Btg2 circuit mechanism in Btg2-mediated podocyte injury in FSGS. In conclusion, Btg2 is pathogenic in FSGS and promotes podocyte injury via a Smad3-dependent EMT pathway.


Subject(s)
Glomerulosclerosis, Focal Segmental , Podocytes , Animals , Humans , Mice , Doxorubicin/pharmacology , Glomerulosclerosis, Focal Segmental/chemically induced , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Kidney/metabolism , Podocytes/metabolism , Podocytes/pathology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism
4.
Int Immunopharmacol ; 118: 110122, 2023 May.
Article in English | MEDLINE | ID: mdl-37023701

ABSTRACT

Interstitial fibrosis is the key pathological characteristics of chronic kidney diseases (CKD). In this study, we reported that hederagenin (HDG) can effectively improve the renal interstitial fibrosis and its mechanism. We constructed CKD animal models of ischemia reperfusion injury (IRI) and unilateral ureteral obstruction (UUO) respectively to observe the improvement effect of HDG on CKD. The results showed that HDG can effectively improve the pathological structure of kidney and the renal fibrosis in CKD mice. Meanwhile, HDG can also significantly reduce the expression of α-SMA and FN induced by TGF-ß in Transformed C3H Mouse Kidney-1 (TCMK1) cells. Mechanistically, we performed transcriptome sequencing on UUO kidneys treated with HDG. By real time PCR screening of the sequencing results, we determined that ISG15 plays an important role in the intervention of HDG in CKD. Subsequently, we knocked-down ISG15 in TCMK1 and found that ISG15 knock-down significantly inhibited TGF-ß-induced fibrotic protein expression and JAK/STAT activation. Finally, we performed electrotransfection and used liposomes to transfect ISG15 overexpression plasmids to up-regulate ISG15 in kidney and cells, respectively. We found that ISG15 can aggravate renal tubular cell fibrosis and abolish the protection of HDG on CKD. These results indicated that HDG significantly improves renal fibrosis in CKD by inhibiting ISG15 and its downstream JAK/STAT signaling pathway, which provides a new drug and research target for the subsequent treatment of CKD.


Subject(s)
Renal Insufficiency, Chronic , Ureteral Obstruction , Mice , Animals , Mice, Inbred C3H , Kidney/pathology , Renal Insufficiency, Chronic/pathology , Ureteral Obstruction/drug therapy , Signal Transduction , Transforming Growth Factor beta/metabolism , Fibrosis , Transforming Growth Factor beta1/metabolism
5.
Front Microbiol ; 11: 577756, 2020.
Article in English | MEDLINE | ID: mdl-33072044

ABSTRACT

Most bacteria, including mycobacteria, utilize a two-step indirect tRNA aminoacylation pathway to generate correctly aminoacylated glutaminyl and asparaginyl tRNAs. This involves an initial step in which a non-discriminatory aminoacyl tRNA synthetase misacylates the tRNA, followed by a second step in which the essential amidotransferase, GatCAB, amidates the misacylated tRNA to its correct, cognate form. It had been previously demonstrated that mutations in gatA can mediate increased error rates specifically of glutamine to glutamate or asparagine to aspartate in protein synthesis. However, the role of mutations in gatB or gatC in mediating mistranslation are unknown. Here, we applied a forward genetic screen to enrich for mistranslating mutants of Mycobacterium smegmatis. The majority (57/67) of mutants had mutations in one of the gatCAB genes. Intriguingly, the most common mutation identified was an insertion in the 3' of gatC, abolishing its stop codon, and resulting in a fused GatC-GatA polypeptide. Modeling the effect of the fusion on GatCAB structure suggested a disruption of the interaction of GatB with the CCA-tail of the misacylated tRNA, suggesting a potential mechanism by which this mutation may mediate increased translational errors. Furthermore, we confirm that the majority of mutations in gatCAB that result in increased mistranslation also cause increased tolerance to rifampicin, although there was not a perfect correlation between mistranslation rates and degree of tolerance. Overall, our study identifies that mutations in all three gatCAB genes can mediate adaptive mistranslation and that mycobacteria are extremely tolerant to perturbation in the indirect tRNA aminoacylation pathway.

6.
J Ayub Med Coll Abbottabad ; 31(4): 481-484, 2019.
Article in English | MEDLINE | ID: mdl-31933295

ABSTRACT

BACKGROUND: Protection of parathyroid is very important in thyroid surgery. Our aim was to compare the effect of Focus Harmonic Scalpel and Conventional Haemostasis on parathyroid function in thyroid surgery. METHODS: To analyse the clinical data of patients in our hospital from November 2011-December 2015 retrospectively. Operations have been performed with Focus Harmonic Scalpel in thyroid surgery since May 2013. Seventy-four patients with nodular goitre constituted Harmonic Scalpel group and Conventional Haemostasis group, and so did 139 patients with thyroid papillary carcinoma. Clinical data were compared such as age, gender, thyroid volume, operation procedure, preoperative parathyroid hormone and serum calcium concentration between the two groups. The differences between the two groups were observed in serum calcium concentration, parathyroid hormone concentration, incidence of transient hypocalcaemia and hypoparathyroidism after operation. RESULTS: The preoperative data showed no significant difference between Harmonic Scalpel group and Conventional Haemostasis group. No significant difference existed in postoperative clinic data at six a.m. the first day after operation between the two groups for patients with nodular goitre. The incidence of transient hypoparathyroidism and hypocalcaemia in Harmonic Scalpel group were less than that in Conventional Haemostasis group in thyroid surgery. Significant differences existed in the mean of serum calcium concentration and incidence of transient hypocalcaemia between the two groups for thyroid papillary carcinoma statistically. CONCLUSION: Focus Harmonic Scalpel has certain advantages than conventional Haemostasis in protecting parathyroid glands, reducing the incidence of transient hypoparathyroidism and hypocalcaemia in thyroid surgery, especially for patients with thyroid cancer.


Subject(s)
Hemostasis, Surgical/instrumentation , Parathyroid Glands/physiology , Thyroid Cancer, Papillary/surgery , Thyroid Neoplasms/surgery , Thyroidectomy/instrumentation , Adult , Aged , Calcium/blood , Female , Goiter/surgery , Hemostasis, Surgical/adverse effects , Hemostasis, Surgical/methods , Humans , Hypocalcemia/etiology , Hypoparathyroidism/etiology , Male , Middle Aged , Parathyroid Glands/injuries , Parathyroid Hormone/blood , Postoperative Complications/etiology , Retrospective Studies , Thyroidectomy/adverse effects
7.
Elife ; 72018 08 28.
Article in English | MEDLINE | ID: mdl-30152756

ABSTRACT

Most bacteria use an indirect pathway to generate aminoacylated glutamine and/or asparagine tRNAs. Clinical isolates of Mycobacterium tuberculosis with increased rates of error in gene translation (mistranslation) involving the indirect tRNA-aminoacylation pathway have increased tolerance to the first-line antibiotic rifampicin. Here, we identify that the aminoglycoside kasugamycin can specifically decrease mistranslation due to the indirect tRNA pathway. Kasugamycin but not the aminoglycoside streptomycin, can limit emergence of rifampicin resistance in vitro and increases mycobacterial susceptibility to rifampicin both in vitro and in a murine model of infection. Moreover, despite parenteral administration of kasugamycin being unable to achieve the in vitro minimum inhibitory concentration, kasugamycin alone was able to significantly restrict growth of Mycobacterium tuberculosis in mice. These data suggest that pharmacologically reducing mistranslation may be a novel mechanism for targeting bacterial adaptation.


Subject(s)
Aminoglycosides/pharmacology , Drug Resistance, Bacterial/drug effects , Mycobacterium tuberculosis/drug effects , Protein Biosynthesis/drug effects , Rifampin/pharmacology , Aminoacylation , Aminoglycosides/administration & dosage , Aminoglycosides/pharmacokinetics , Aminoglycosides/therapeutic use , Animals , Drug Synergism , Edeine/pharmacology , Injections, Intraperitoneal , Mice , Microbial Sensitivity Tests , Organ Specificity , RNA, Transfer/metabolism , Rifampin/therapeutic use , Streptomycin/administration & dosage , Streptomycin/pharmacokinetics , Streptomycin/pharmacology , Streptomycin/therapeutic use , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis/pathology
8.
Nat Microbiol ; 1(11): 16147, 2016 Aug 26.
Article in English | MEDLINE | ID: mdl-27564922

ABSTRACT

Although regulation of translation fidelity is an essential process1-7, diverse organisms and organelles have differing requirements of translational accuracy8-15, and errors in gene translation serve an adaptive function under certain conditions16-20. Therefore, optimal levels of fidelity may vary according to context. Most bacteria utilize a two-step pathway for the specific synthesis of aminoacylated glutamine and/or asparagine tRNAs, involving the glutamine amidotransferase GatCAB21-25, but it had not been appreciated that GatCAB may play a role in modulating mistranslation rates. Here, by using a forward genetic screen, we show that the mycobacterial GatCAB enzyme complex mediates the translational fidelity of glutamine and asparagine codons. We identify mutations in gatA that cause partial loss of function in the holoenzyme, with a consequent increase in rates of mistranslation. By monitoring single-cell transcription dynamics, we demonstrate that reduced gatCAB expression leads to increased mistranslation rates, which result in enhanced rifampicin-specific phenotypic resistance. Consistent with this, strains with mutations in gatA from clinical isolates of Mycobacterium tuberculosis show increased mistranslation, with associated antibiotic tolerance, suggesting a role for mistranslation as an adaptive strategy in tuberculosis. Together, our findings demonstrate a potential role for the indirect tRNA aminoacylation pathway in regulating translational fidelity and adaptive mistranslation.


Subject(s)
Mycobacterium smegmatis/enzymology , Nitrogenous Group Transferases/genetics , Protein Biosynthesis , Transfer RNA Aminoacylation , Asparagine/metabolism , Codon , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Glutamine/metabolism , Mutation , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Nitrogenous Group Transferases/metabolism , Rifampin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL