Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mater Horiz ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109831

ABSTRACT

Ultrathin nanofibrous films with unique properties, such as controlled thickness, structures, and excellent mechanical robustness, play a vital role in flexible wearable devices, electronic skin, and rechargeable batteries. However, nanofibrous films are always facing limitations in their mechanical properties, even though they are strong when used as textiles, mainly owing to their structural shortcomings by using conventional fabrication methods. Herein, we present the fabrication of free-standing ultrathin nanofibrous films with good mechanical properties by using a microfluidic-based continuous printing strategy. Owing to the precisely controllable microfluidic flow in the micrometre-scale, the resulting aramid nanofibre (ANF) films can reach thicknesses as low as 140 ± 25 nm. Specifically, the tensile strength of such ultrathin ANF films is recorded at an impressive value of 667 ± 40 MPa, representing a 120% improvement compared to the films prepared by using casting method. Such excellent mechanical robustness comes from the double-sided protonation, which shows a symmetrically dense structure compared to the asymmetric structure of cast films. Furthermore, we demonstrate the continuous fabrication of thin regenerated cellulose nanofiber (RCNF) and cellulose diacetate (CDA) films using the microfluidic-based printing strategy. Both microfluidic-based films show significant enhancements in strength, with a 42% increase for RCNF and a 94% increase for CDA compared to their cast films. We envision that this microfluidic-based continuous printing strategy provides a promising pathway for the development of advanced ultrathin nanofibrous films towards practical applications.

2.
Nat Plants ; 10(5): 736-742, 2024 05.
Article in English | MEDLINE | ID: mdl-38724696

ABSTRACT

Symbiotic nitrogen fixation in legume nodules requires substantial energy investment from host plants, and soybean (Glycine max (L.) supernodulation mutants show stunting and yield penalties due to overconsumption of carbon sources. We obtained soybean mutants differing in their nodulation ability, among which rhizobially induced cle1a/2a (ric1a/2a) has a moderate increase in nodule number, balanced carbon allocation, and enhanced carbon and nitrogen acquisition. In multi-year and multi-site field trials in China, two ric1a/2a lines had improved grain yield, protein content and sustained oil content, demonstrating that gene editing towards optimal nodulation improves soybean yield and quality.


Subject(s)
Glycine max , Plant Root Nodulation , Glycine max/genetics , Glycine max/metabolism , Glycine max/microbiology , Plant Root Nodulation/genetics , Root Nodules, Plant/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/microbiology , Symbiosis , Nitrogen Fixation/genetics , Gene Editing , Mutation , Plant Proteins/metabolism , Plant Proteins/genetics , Soybean Proteins/genetics , Soybean Proteins/metabolism
3.
Mol Breed ; 43(5): 33, 2023 May.
Article in English | MEDLINE | ID: mdl-37312748

ABSTRACT

Soybean is one of the most versatile crops for oil production, human diets, and feedstocks. The vegetative biomass of soybean is an important determinant of seed yield and is crucial for the forage usages. However, the genetic control of soybean biomass is not well explained. In this work, we used a soybean germplasm population, including 231 improved cultivars, 207 landraces, and 121 wild soybeans, to investigate the genetic basis of biomass accumulation of soybean plants at the V6 stage. We found that biomass-related traits, including NDW (nodule dry weight), RDW (root dry weight), SDW (shoot dry weight), and TDW (total dry weight), were domesticated during soybean evolution. In total, 10 loci, encompassing 47 putative candidate genes, were detected for all biomass-related traits by a genome-wide association study. Among these loci, seven domestication sweeps and six improvement sweeps were identified. Glyma.05G047900, a purple acid phosphatase, was a strong candidate gene to improve biomass for future soybean breeding. This study provided new insights into the genetic basis of biomass accumulation during soybean evolution. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-023-01380-6.

4.
Inorg Chem ; 62(11): 4558-4569, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36894513

ABSTRACT

In this study, a process based on the molten salt method was proposed to prepare La2Zr2O7 for improving the kinetic conditions of synthesis. Considering that the particle size of raw materials is an important factor that may have an effect on the kinetic process of synthesis, ZrO2 and La2O3 with different particle sizes are used as raw materials, and the synthesis experiment is carried out at 900-1300 °C through the combination of raw materials with different particle sizes. The results show that the particle size of ZrO2 plays an important role in the synthesis of La2Zr2O7. The "dissolution precipitation" mechanism of the synthesis process in the NaCl-KCl molten salt was confirmed by SEM image observation. Furthermore, the influence of the dissolution rate of each raw material on the synthesis reaction was studied by introducing the Noyes-Whitney equation and testing the specific surface area and solubility of each raw material, and it was confirmed that the particle size of ZrO2 was the limiting condition of the synthesis reaction, and use of ZrO2(Z50) with a nominal particle size of 50 nm could significantly improve the kinetic condition of the reaction, thus reducing the synthesis temperature, which can help realize the energy-saving and -efficient synthesis of pyrochlore La2Zr2O7.

SELECTION OF CITATIONS
SEARCH DETAIL