Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39005360

ABSTRACT

Transcriptional regulation, involving the complex interplay between regulatory sequences and proteins, directs all biological processes. Computational models of transcription lack generalizability to accurately extrapolate in unseen cell types and conditions. Here, we introduce GET, an interpretable foundation model designed to uncover regulatory grammars across 213 human fetal and adult cell types. Relying exclusively on chromatin accessibility data and sequence information, GET achieves experimental-level accuracy in predicting gene expression even in previously unseen cell types. GET showcases remarkable adaptability across new sequencing platforms and assays, enabling regulatory inference across a broad range of cell types and conditions, and uncovering universal and cell type specific transcription factor interaction networks. We evaluated its performance on prediction of regulatory activity, inference of regulatory elements and regulators, and identification of physical interactions between transcription factors. Specifically, we show GET outperforms current models in predicting lentivirus-based massive parallel reporter assay readout with reduced input data. In fetal erythroblasts, we identify distal (>1Mbp) regulatory regions that were missed by previous models. In B cells, we identified a lymphocyte-specific transcription factor-transcription factor interaction that explains the functional significance of a leukemia-risk predisposing germline mutation. In sum, we provide a generalizable and accurate model for transcription together with catalogs of gene regulation and transcription factor interactions, all with cell type specificity.

2.
Materials (Basel) ; 17(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38399144

ABSTRACT

During the secondary thermoforming of carbon fiber-reinforced polyphenylene sulfide (CF/PPS) composites, a vital material for the aerospace field, varied thermal parameters profoundly influence the crystallization behavior of the PPS matrix. Notably, PPS exhibits a distinctive self-nucleation (SN) behavior during repeated thermal cycles. This behavior not only affects its crystallization but also impacts the processing and mechanical properties of PPS and CF/PPS composites. In this article, the effects of various parameters on the SN and non-isothermal crystallization behavior of PPS during two thermal cycles were systematically investigated by differential scanning calorimetry. It was found that the SN behavior was not affected by the cooling rate in the second thermal cycle. Furthermore, the lamellar annealing resulting from the heating process in both thermal cycles affected the temperature range for forming the special SN domain, because of the refined lamellar structure, and expelled various defects. Finally, this study indicated that to control the strong melt memory effect in the first thermal cycle, both the heating rate and processing melt temperature need to be controlled simultaneously. This work reveals that through collaborative control of these parameters, the crystalline morphology, crystallization temperature and crystallization rate in two thermal cycles are controlled. Furthermore, it presents a new perspective for controlling the crystallization behavior of the thermoplastic composite matrix during the secondary thermoforming process.

3.
Genome Biol ; 24(1): 291, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110959

ABSTRACT

Spatial omics technologies can help identify spatially organized biological processes, but existing computational approaches often overlook structural dependencies in the data. Here, we introduce Smoother, a unified framework that integrates positional information into non-spatial models via modular priors and losses. In simulated and real datasets, Smoother enables accurate data imputation, cell-type deconvolution, and dimensionality reduction with remarkable efficiency. In colorectal cancer, Smoother-guided deconvolution reveals plasma cell and fibroblast subtype localizations linked to tumor microenvironment restructuring. Additionally, joint modeling of spatial and single-cell human prostate data with Smoother allows for spatial mapping of reference populations with significantly reduced ambiguity.


Subject(s)
Fibroblasts , Prostate , Humans , Male , Tumor Microenvironment
4.
Cell Stem Cell ; 30(9): 1262-1281.e8, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37582363

ABSTRACT

RNA splicing factors are recurrently mutated in clonal blood disorders, but the impact of dysregulated splicing in hematopoiesis remains unclear. To overcome technical limitations, we integrated genotyping of transcriptomes (GoT) with long-read single-cell transcriptomics and proteogenomics for single-cell profiling of transcriptomes, surface proteins, somatic mutations, and RNA splicing (GoT-Splice). We applied GoT-Splice to hematopoietic progenitors from myelodysplastic syndrome (MDS) patients with mutations in the core splicing factor SF3B1. SF3B1mut cells were enriched in the megakaryocytic-erythroid lineage, with expansion of SF3B1mut erythroid progenitor cells. We uncovered distinct cryptic 3' splice site usage in different progenitor populations and stage-specific aberrant splicing during erythroid differentiation. Profiling SF3B1-mutated clonal hematopoiesis samples revealed that erythroid bias and cell-type-specific cryptic 3' splice site usage in SF3B1mut cells precede overt MDS. Collectively, GoT-Splice defines the cell-type-specific impact of somatic mutations on RNA splicing, from early clonal outgrowths to overt neoplasia, directly in human samples.


Subject(s)
Myelodysplastic Syndromes , RNA Splice Sites , Humans , Multiomics , RNA Splicing/genetics , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Mutation/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism
5.
Genome Res ; 33(8): 1381-1394, 2023 08.
Article in English | MEDLINE | ID: mdl-37524436

ABSTRACT

Accurately measuring biological age is crucial for improving healthcare for the elderly population. However, the complexity of aging biology poses challenges in how to robustly estimate aging and interpret the biological significance of the traits used for estimation. Here we present SCALE, a statistical pipeline that quantifies biological aging in different tissues using explainable features learned from literature and single-cell transcriptomic data. Applying SCALE to the "Mouse Aging Cell Atlas" (Tabula Muris Senis) data, we identified tissue-level transcriptomic aging programs for more than 20 murine tissues and created a multitissue resource of mouse quantitative aging-associated genes. We observe that SCALE correlates well with other age indicators, such as the accumulation of somatic mutations, and can distinguish subtle differences in aging even in cells of the same chronological age. We further compared SCALE with other transcriptomic and methylation "clocks" in data from aging muscle stem cells, Alzheimer's disease, and heterochronic parabiosis. Our results confirm that SCALE is more generalizable and reliable in assessing biological aging in aging-related diseases and rejuvenating interventions. Overall, SCALE represents a valuable advancement in our ability to measure aging accurately, robustly, and interpretably in single cells.


Subject(s)
Aging , Transcriptome , Animals , Mice , Aging/genetics , Gene Expression Profiling , Phenotype , Models, Biological
6.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: mdl-33627408

ABSTRACT

New strategies for cancer immunotherapy are needed since most solid tumors do not respond to current approaches. Here we used epithelial cell adhesion molecule EpCAM (a tumor-associated antigen highly expressed on common epithelial cancers and their tumor-initiating cells) aptamer-linked small-interfering RNA chimeras (AsiCs) to knock down genes selectively in EpCAM+ tumors with the goal of making cancers more visible to the immune system. Knockdown of genes that function in multiple steps of cancer immunity was evaluated in aggressive triple-negative and HER2+ orthotopic, metastatic, and genetically engineered mouse breast cancer models. Gene targets were chosen whose knockdown was predicted to promote tumor neoantigen expression (Upf2, Parp1, Apex1), phagocytosis, and antigen presentation (Cd47), reduce checkpoint inhibition (Cd274), or cause tumor cell death (Mcl1). Four of the six AsiC (Upf2, Parp1, Cd47, and Mcl1) potently inhibited tumor growth and boosted tumor-infiltrating immune cell functions. AsiC mixtures were more effective than individual AsiC and could synergize with anti-PD-1 checkpoint inhibition.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , CD47 Antigen/genetics , Epithelial Cell Adhesion Molecule/genetics , Mammary Neoplasms, Experimental/therapy , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , RNA-Binding Proteins/genetics , Animals , Antigen Presentation/drug effects , Antineoplastic Agents, Immunological/chemistry , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/immunology , Aptamers, Nucleotide/pharmacology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/immunology , DNA-(Apurinic or Apyrimidinic Site) Lyase/antagonists & inhibitors , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/immunology , Epithelial Cell Adhesion Molecule/immunology , Female , Gene Expression Regulation, Neoplastic , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Immunoconjugates/pharmacology , Immunotherapy/methods , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/pathology , Mice , Molecular Targeted Therapy , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/immunology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Phagocytosis/drug effects , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/immunology , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/immunology , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/therapy , Tumor Burden/drug effects
7.
Nat Immunol ; 21(9): 1119-1133, 2020 09.
Article in English | MEDLINE | ID: mdl-32719519

ABSTRACT

The full neutrophil heterogeneity and differentiation landscape remains incompletely characterized. Here, we profiled >25,000 differentiating and mature mouse neutrophils using single-cell RNA sequencing to provide a comprehensive transcriptional landscape of neutrophil maturation, function and fate decision in their steady state and during bacterial infection. Eight neutrophil populations were defined by distinct molecular signatures. The three mature peripheral blood neutrophil subsets arise from distinct maturing bone marrow neutrophil subsets. Driven by both known and uncharacterized transcription factors, neutrophils gradually acquire microbicidal capability as they traverse the transcriptional landscape, representing an evolved mechanism for fine-tuned regulation of an effective but balanced neutrophil response. Bacterial infection reprograms the genetic architecture of neutrophil populations, alters dynamic transitions between subpopulations and primes neutrophils for augmented functionality without affecting overall heterogeneity. In summary, these data establish a reference model and general framework for studying neutrophil-related disease mechanisms, biomarkers and therapeutic targets at single-cell resolution.


Subject(s)
Escherichia coli Infections/immunology , Escherichia coli/physiology , Neutrophils/physiology , Peritonitis/immunology , Single-Cell Analysis/methods , Animals , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Female , Gene Expression Profiling , Homeostasis , Humans , Mice , Sequence Analysis, RNA
8.
Ultrasonics ; 49(2): 276-80, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19010508

ABSTRACT

The influence of the pore shapes on the band structures in phononic crystals with periodic distributed void pores are investigated in this paper. By using finite difference time domain (FDTD) scheme, the dispersion properties of the in-plane x-y mode waves in the materials with triangular, circular or square pores are discussed respectively. The influence of the pore shapes and the porosity on the band gap structures is analyzed. The results show that for x-y mode waves, the stop bands are easily formed in the materials with triangular pores, but hard for square ones. Moreover, a critical porosity exists for the formation of the absolute band gaps. Along with the increase of the porosity, the width of the absolute band gap is increased, but the centre frequency is dropped.

SELECTION OF CITATIONS
SEARCH DETAIL