Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 7290, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242567

ABSTRACT

In the era of 5 G, the rise in power density in miniaturized, flexible electronic devices has created an urgent need for thin, flexible, polymer-based electrically and thermally conductive nanocomposites to address challenges related to electromagnetic interference (EMI) and heat accumulation. However, the difficulties in establishing enduring and continuous transfer pathways for electrons and phonons using solid-rigid conductive fillers within insulative polymer matrices limit the development of such nanocomposites. Herein, we incorporate MXene-bridging-liquid metal (MBLM) solid-liquid bi-continuous electrical-thermal conductive networks within aramid nanofiber/polyvinyl alcohol (AP) matrices, resulting in the AP/MBLM nanocomposite with ultra-high electrical conductivity (3984 S/cm) and distinguished thermal conductivity of 13.17 W m-1 K-1. This nanocomposite exhibits excellent EMI shielding efficiency (SE) of 74.6 dB at a minimal thickness of 22 µm, and maintains high EMI shielding stability after enduring various harsh conditions. Meanwhile, the AP/MBLM nanocomposite also demonstrates promising heat dissipation behavior. This work expands the concept of creating thin films with high electrical and thermal conductivity.

2.
ACS Nano ; 17(13): 12616-12628, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37382511

ABSTRACT

Gallium-based liquid metal (LM) with intriguing high electrical conductivity and room-temperature fluidity has attracted substantial attention for its potential application in flexible electromagnetic interference (EMI) shielding. However, the EMI shielding performance of the existing LM-based composites is unsatisfying due to the irreconcilable contradiction between high EMI shielding efficiency (SE) and low thickness. In addition, the research on environmentally stable EMI shielding material has become an urgent need due to the increasingly sophisticated application scenarios. Herein, we prepared a reduced graphene oxide (rGO) bridging LM layered heterostructure nanocomposite with the liquid-infused slippery surface (S-rGO/LM), which exhibits an ultrahigh X-band EMI SE of 80 dB at a mere internal thickness of 33 µm, and an extremely high value of 100 dB at an internal thickness of 67 µm. More significantly, protected by the ultrathin (2 µm) yet effective slippery surface, the S-rGO/LM film exhibits exceptional EMI shielding stability (EMI SE stays above 70 dB) after enduring various harsh conditions (harsh chemical environments, extreme operating temperatures, and severe mechanical wearing). Moreover, the S-rGO/LM film also demonstrates satisfying photothermal behavior and excellent Joule heating performance (surface temperature of 179 °C at 1.75 V, thermal response <10 s), which endows it with the capability of anti-icing/de-icing. This work proposes a way to construct an LM-based nanocomposite with reliable high-performance EMI shielding capability, which shows great potential for applications in wearable devices, defense, and aeronautics and astronautics.

3.
Neurosci Bull ; 34(6): 1091-1099, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30413937

ABSTRACT

Although extensively studied, the exact role of sleep in learning and memory is still not very clear. Sleep deprivation has been most frequently used to explore the effects of sleep on learning and memory, but the results from such studies are inevitably complicated by concurrent stress and distress. Furthermore, it is not clear whether there is a strict time-window between sleep and memory consolidation. In the present study we were able to induce time-locked slow-wave sleep (SWS) in mice by optogenetically stimulating GABAergic neurons in the parafacial zone (PZ), providing a direct approach to analyze the influences of SWS on learning and memory with precise time-windows. We found that SWS induced by light for 30 min immediately or 15 min after the training phase of the object-in-place task significantly prolonged the memory from 30 min to 6 h. However, induction of SWS 30 min after the training phase did not improve memory, suggesting a critical time-window between the induction of a brief episode of SWS and learning for memory consolidation. Application of a gentle touch to the mice during light stimulation to prevent SWS induction also failed to improve memory, indicating the specific role of SWS, but not the activation of PZ GABAergic neurons itself, in memory consolidation. Similar influences of light-induced SWS on memory consolidation also occurred for Y-maze spatial memory and contextual fear memory, but not for cued fear memory. SWS induction immediately before the test phase had no effect on memory performance, indicating that SWS does not affect memory retrieval. Thus, by induction of a brief-episode SWS we have revealed a critical time window for the consolidation of hippocampus-dependent memory.


Subject(s)
Evoked Potentials, Motor/physiology , Hippocampus/physiology , Memory Consolidation/physiology , Sleep, Slow-Wave/physiology , Animals , Cues , Electroencephalography , Electromyography , Fear/psychology , Glutamate Decarboxylase/metabolism , Light , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sleep Deprivation , Time Factors , Vesicular Inhibitory Amino Acid Transport Proteins/genetics , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
4.
Neurosci Bull ; 34(3): 485-496, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29557546

ABSTRACT

The GABAergic neurons in the parafacial zone (PZ) play an important role in sleep-wake regulation and have been identified as part of a sleep-promoting center in the brainstem, but the long-range connections mediating this function remain poorly characterized. Here, we performed whole-brain mapping of both the inputs and outputs of the GABAergic neurons in the PZ of the mouse brain. We used the modified rabies virus EnvA-ΔG-DsRed combined with a Cre/loxP gene-expression strategy to map the direct monosynaptic inputs to the GABAergic neurons in the PZ, and found that they receive inputs mainly from the hypothalamic area, zona incerta, and parasubthalamic nucleus in the hypothalamus; the substantia nigra, pars reticulata and deep mesencephalic nucleus in the midbrain; and the intermediate reticular nucleus and medial vestibular nucleus (parvocellular part) in the pons and medulla. We also mapped the axonal projections of the PZ GABAergic neurons with adeno-associated virus, and defined the reciprocal connections of the PZ GABAergic neurons with their input and output nuclei. The newly-found inputs and outputs of the PZ were also listed compared with the literature. This cell-type-specific neuronal whole-brain mapping of the PZ GABAergic neurons may reveal the circuits underlying various functions such as sleep-wake regulation.


Subject(s)
Brain Mapping , Brain Stem/cytology , Brain/anatomy & histology , GABAergic Neurons/physiology , Neural Pathways/physiology , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism , Animals , Axons/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Rabies virus/genetics , Rabies virus/metabolism , Transduction, Genetic , Vesicular Inhibitory Amino Acid Transport Proteins/genetics
5.
Crit Care Med ; 45(10): e1075-e1082, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28806219

ABSTRACT

OBJECTIVES: Basal forebrain cholinergic neurons are proposed as a major neuromodulatory system in inflammatory modulation. However, the function of basal forebrain cholinergic neurons in sepsis is unknown, and the neural pathways underlying cholinergic anti-inflammation remain unexplored. DESIGN: Animal research. SETTING: University research laboratory. SUBJECTS: Male wild-type C57BL/6 mice and ChAT-ChR2-EYFP (ChAT) transgenic mice. INTERVENTIONS: The cholinergic neuronal activity of the basal forebrain was manipulated optogenetically. Cecal ligation and puncture was produced to induce sepsis. Left cervical vagotomy and 6-hydroxydopamine injection to the spleen were used. MEASUREMENTS AND MAIN RESULTS: Photostimulation of basal forebrain cholinergic neurons induced a significant decrease in the levels of tumor necrosis factor-α and interleukin-6 in the serum and spleen. When cecal ligation and puncture was combined with left cervical vagotomy in photostimulated ChAT mice, these reductions in tumor necrosis factor-α and interleukin-6 were partly reversed. Furthermore, photostimulating basal forebrain cholinergic neurons induced a large increase in c-Fos expression in the basal forebrain, the dorsal motor nucleus of the vagus, and the ventral part of the solitary nucleus. Among them, 35.2% were tyrosine hydroxylase positive neurons. Furthermore, chemical denervation showed that dopaminergic neurotransmission to the spleen is indispensable for the anti-inflammation. CONCLUSIONS: These results are the first to demonstrate that selectively activating basal forebrain cholinergic neurons is sufficient to attenuate systemic inflammation in sepsis. Specifically, photostimulation of basal forebrain cholinergic neurons activated dopaminergic neurons in dorsal motor nucleus of the vagus/ventral part of the solitary nucleus, and this dopaminergic efferent signal was further transmitted by the vagus nerve to the spleen. This cholinergic-to-dopaminergic neural circuitry, connecting central cholinergic neurons to the peripheral organ, might have mediated the anti-inflammatory effect in sepsis.


Subject(s)
Basal Forebrain/physiology , Cholinergic Neurons/physiology , Inflammation/therapy , Sepsis/therapy , Animals , Basal Forebrain/metabolism , Interleukin-6/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Photic Stimulation , Proto-Oncogene Proteins c-fos/metabolism , Spleen/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tyrosine 3-Monooxygenase/metabolism
6.
PLoS One ; 10(7): e0130130, 2015.
Article in English | MEDLINE | ID: mdl-26151909

ABSTRACT

The basal forebrain (BF) plays a crucial role in cortical activation. Our previous study showed that activation of cholinergic BF neurons alone is sufficient to suppress slow-wave sleep (SWS) and promote wakefulness and rapid-eye-movement (REM) sleep. However, the exact role of silencing cholinergic BF neurons in the sleep-wake cycle remains unclear. We inhibitied the cholinergic BF neurons genetically targeted with archaerhodopsin (Arch) with yellow light to clarify the role of cholinergic BF neurons in the sleep-wake cycle. Bilateral inactivation of cholinergic BF neurons genetically targeted with archaerhodopsin prolonged SWS and decreased the probability of awakening from SWS in mice. However, silencing these neurons changed neither the duration of wakefulness or REM sleep, nor the probability of transitions to other sleep-wake episodes from wakefulness or REM sleep. Furthermore, silencing these neurons for 6 h within the inactive or active period increased the duration of SWS at the expense of the duration of wakefulness, as well as increasing the number of prolonged SWS episodes (120-240 s). The lost wakefulness was compensated by a delayed increase of wakefulness, so the total duration of SWS and wakefulness during 24 h was kept stable. Our results indicate that the main effect of these neurons is to terminate SWS, whereas wakefulness or REM sleep may be determined by co-operation of the cholinergic BF neurons with other arousal-sleep control systems.


Subject(s)
Archaeal Proteins/pharmacology , Basal Forebrain/physiopathology , Cholinergic Neurons/drug effects , Sleep Stages/physiology , Animals , Cholinergic Neurons/physiology , Cholinergic Neurons/radiation effects , Electromyography , Electrophysiological Phenomena , Immunohistochemistry , Light , Mice , Mice, Transgenic , Sleep, REM/physiology , Wakefulness/physiology
SELECTION OF CITATIONS
SEARCH DETAIL