Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 33
2.
Trends Parasitol ; 38(11): 975-990, 2022 11.
Article En | MEDLINE | ID: mdl-36109313

The opportunistic protist Acanthamoeba, which interacts with other microbes such as bacteria, fungi, and viruses, shows significant similarity in cellular and functional aspects to human macrophages. Intracellular survival of microbes in this microbivorous amoebal host may be a crucial step for initiation of infection in higher eukaryotic cells. Therefore, Acanthamoeba-microbe adaptations are considered an evolutionary model of macrophage-pathogen interactions. This paper reviews Acanthamoeba as an emerging human pathogen and different ecological interactions between Acanthamoeba and microbes that may serve as environmental training grounds and a genetic melting pot for the evolution, persistence, and transmission of potential human pathogens.


Acanthamoeba , Acanthamoeba/microbiology , Bacteria , Fungi , Humans , Macrophages , Phagocytes
3.
Life (Basel) ; 12(9)2022 Aug 31.
Article En | MEDLINE | ID: mdl-36143390

Avian pathogenic Escherichia coli (APEC) is an important extra-intestinal pathogenic E. coli (ExPEC), which often causes systemic infection in poultry and causes great economic loss to the breeding industry. In addition, as a major source of human ExPEC infection, the potential zoonotic risk of APEC has been an ongoing concern. Previous studies have pointed out that APEC is a potential zoonotic pathogen, which has high homology with human pathogenic E. coli such as uro-pathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC), shares multiple virulence factors and can cause mammalian diseases. Previous studies have reported that O18 and O78 could cause different degrees of meningitis in neonatal rats, and different serotypes had different degrees of zoonotic risk. Here, we compared APEC DE205B (O2:K1) with NMEC RS218 (O18:K1:H7) by phylogenetic analysis and virulence gene identification to analyze the potential risk of DE205B in zoonotic diseases. We found that DE205B possessed a variety of virulence factors associated with meningitis and, through phylogenetic analysis, had high homology with RS218. DE205B could colonize the cerebrospinal fluid (CSF) of rats, and cause meningitis and nerve damage. Symptoms and pathological changes in the brain were similar to RS218. In addition, we found that DE205B had a complete T6SS, of which Hcp protein was its important structural protein. Hcp1 induced cytoskeleton rearrangement in human brain microvascular endothelial cells (HBMECs), and Hcp2 was mainly involved in the invasion of DE205B in vitro. In the meningitis model of rats, deletion of hcp2 gene reduced survival in the blood and the brain invasiveness of DE205B. Compared with WT group, Δhcp2 group induced lower inflammation and neutrophils infiltration in brain tissue, alleviating the process of meningitis. Together, these results suggested that APEC DE205B had close genetic similarities to NMEC RS218, and a similar mechanism in causing meningitis and being a risk for zoonosis. This APEC serotype provided a basis for zoonotic research.

4.
BMC Infect Dis ; 22(1): 757, 2022 Sep 29.
Article En | MEDLINE | ID: mdl-36175838

INTRODUCTION: Acanthamoeba is an emerging pathogen, infamous for its resilience against antiprotozoal compounds, disinfectants and harsh environments. It is known to cause keratitis, a sight-threatening, painful and difficult to treat corneal infection which is often reported among contact lens wearers and patients with ocular trauma. Acanthamoeba comprises over 24 species and currently 23 genotypes (T1-T23) have been identified. AIMS: This retrospective study was designed to examine the Acanthamoeba species and genotypes recovered from patients with Acanthamoeba keratitis (AK), determine the presence of endosymbionts in ocular isolates of Acanthamoeba and review the clinical presentations. METHODOLOGY: Thirteen culture-confirmed AK patients treated in a tertiary eye care facility in Hyderabad, India from February to October 2020 were included in this study. The clinical manifestations, medications and visual outcomes of all patients were obtained from medical records. The Acanthamoeba isolates were identified by sequencing the ribosomal nuclear subunit (rns) gene. Acanthamoeba isolates were assessed for the presence of bacterial or fungal endosymbionts using molecular assays, PCR and fluorescence in situ hybridization (FISH). RESULTS: The mean age of the patients was 33 years (SD ± 17.4; 95% CI 22.5 to 43.5 years). Six (46.2%) cases had AK associated risk factors; four patients had ocular trauma and two were contact lens wearers. A. culbertsoni (6/13, 46.2%) was the most common species, followed by A. polyphaga and A. triangularis. Most of the isolates (12/13) belonged to genotype T4 and one was a T12; three sub-clusters T4A, T4B, and T4F were identified within the T4 genotype. There was no significant association between Acanthamoeba types and clinical outcomes. Eight (61.5%) isolates harboured intracellular bacteria and one contained Malassezia restricta. The presence of intracellular microbes was associated with a higher proportion of stromal infiltrates (88.9%, 8/9), epithelial defect (55.6%, 5/9) and hypopyon (55.6%, 5/9) compared to 50% (2/4), 25% (1/4) and 25% (1/4) AK cases without intracellular microbes, respectively. CONCLUSIONS: Genotype T4 was the predominant isolate in southern India. This is the second report of T12 genotype identified from AK patient in India, which is rarely reported worldwide. The majority of the Acanthamoeba clinical isolates in this study harboured intracellular microbes, which may impact clinical characteristics of AK.


Acanthamoeba Keratitis , Acanthamoeba , Disinfectants , Eye Infections , Acanthamoeba/genetics , Genotype , Humans , In Situ Hybridization, Fluorescence , Retrospective Studies
5.
J Infect Dis ; 226(2): 199-207, 2022 08 24.
Article En | MEDLINE | ID: mdl-35535021

BACKGROUND: Healthcare workers (HCWs) are at risk from aerosol transmission of severe acute respiratory syndrome coronavirus 2. The aims of this study were to (1) quantify the protection provided by masks (surgical, fit-testFAILED N95, fit-testPASSED N95) and personal protective equipment (PPE), and (2) determine if a portable high-efficiency particulate air (HEPA) filter can enhance the benefit of PPE. METHODS: Virus aerosol exposure experiments using bacteriophage PhiX174 were performed. An HCW wearing PPE (mask, gloves, gown, face shield) was exposed to nebulized viruses (108 copies/mL) for 40 minutes in a sealed clinical room. Virus exposure was quantified via skin swabs applied to the face, nostrils, forearms, neck, and forehead. Experiments were repeated with a HEPA filter (13.4 volume-filtrations/hour). RESULTS: Significant virus counts were detected on the face while the participants were wearing either surgical or N95 masks. Only the fit-testPASSED N95 resulted in lower virus counts compared to control (P = .007). Nasal swabs demonstrated high virus exposure, which was not mitigated by the surgical/fit-testFAILED N95 masks, although there was a trend for the fit-testPASSED N95 mask to reduce virus counts (P = .058). HEPA filtration reduced virus to near-zero levels when combined with fit-testPASSED N95 mask, gloves, gown, and face shield. CONCLUSIONS: N95 masks that have passed a quantitative fit-test combined with HEPA filtration protects against high virus aerosol loads at close range and for prolonged periods of time.


COVID-19 , N95 Respirators , COVID-19/prevention & control , Filtration , Humans , Masks , Respiratory Aerosols and Droplets , Viral Load
6.
Microbiol Spectr ; 10(3): e0023222, 2022 06 29.
Article En | MEDLINE | ID: mdl-35536028

O157:H7 is the most important Shiga toxin-producing Escherichia coli (STEC) serotype in relation to public health. Given that antibiotics may contribute to the exacerbation of STEC-related disease and an increased frequency of antibiotic-resistant strains, bacteriophage (phage) therapy is considered a promising alternative. However, phage therapy targeting enteric pathogens is still underdeveloped with many confounding effects from the microbiota. Here we comprehensively compared the therapeutic efficacy of a phage cocktail with the antibiotic enrofloxacin in a mouse model of STEC O157:H7 EDL933 infection. Enrofloxacin treatment provided 100% survival and the phage cocktail treatment provided 90% survival. However, in terms of mouse recovery, the phage cocktail outperformed enrofloxacin in all measured outcomes. Compared with enrofloxacin treatment, phage treatment led to a faster elimination of enteric pathogens, decreased expression levels of inflammatory markers, increased weight gain, maintenance of a stable relative organ weight, and improved homeostasis of the gut microbiota. These results provide support for the potential of phage therapy to combat enteric pathogens and suggest that phage treatment leads to enhanced recovery of infected mice compared with antibiotics. IMPORTANCE With the increasing severity of antibiotic resistance and other adverse consequences, animal experiments and clinical trials investigating the use of phages for the control and prevention of enteric bacterial infections are growing. However, the effects of phages and antibiotics on organisms when treating intestinal infections have not been precisely studied. Here, we comprehensively compared the therapeutic efficacy of a phage cocktail to the antibiotic enrofloxacin in a mouse model of STEC O157:H7 EDL933 infection. We found that, despite a slightly lower protection rate, phage treatment contributed to a faster recovery of infected mice compared with enrofloxacin. These results highlight the potential benefits of phage therapy to combat enteric infections.


Bacteriophages , Escherichia coli Infections , Escherichia coli O157 , Shiga-Toxigenic Escherichia coli , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Disease Models, Animal , Enrofloxacin/pharmacology , Enrofloxacin/therapeutic use , Escherichia coli Infections/microbiology , Escherichia coli Infections/therapy , Mice
7.
EBioMedicine ; 80: 104045, 2022 Jun.
Article En | MEDLINE | ID: mdl-35537278

BACKGROUND: Clinical phage therapy is often delivered alongside antibiotics. However, the phenomenon of phage-antibiotic synergy has been mostly studied in vitro. Here, we assessed the in vivo bactericidal effect of a phage-antibiotic combination on Acinetobacter baumannii AB900 using phage øFG02, which binds to capsular polysaccharides and leads to antimicrobial resensitisation in vitro. METHODS: We performed a two-stage preclinical study using a murine model of severe A. baumannii AB900 bacteraemia. In the first stage, with an endpoint of 11 h, mice (n = 4 per group) were treated with either PBS, ceftazidime, phage øFG02, or the combination of phage and ceftazidime. The second stage involved only the latter two groups (n = 5 per group), with a prolonged endpoint of 16 h. The primary outcome was the average bacterial burden from four body sites (blood, liver, kidney, and spleen). Bacterial colonies from phage-treated mice were retrieved and screened for phage-resistance. FINDINGS: In the first stage, the bacterial burden (CFU/g of tissue) of the combination group (median: 4.55 × 105; interquartile range [IQR]: 2.79 × 105-2.81 × 106) was significantly lower than the PBS (median: 2.42 × 109; IQR: 1.97 × 109-3.48 × 109) and ceftazidime groups (median: 3.86 × 108; IQR: 2.15 × 108-6.35 × 108), but not the phage-only group (median: 1.28 × 107; IQR: 4.71 × 106-7.13 × 107). In the second stage, the combination treatment (median: 1.72 × 106; IQR: 5.11 × 105-4.00 × 106) outperformed the phage-only treatment (median: 7.46 × 107; IQR: 1.43 × 107-1.57 × 108). Phage-resistance emerged in 96% of animals receiving phages, and all the tested isolates (n = 11) had loss-of-function mutations in genes involved in capsule biosynthesis and increased sensitivity to ceftazidime. INTERPRETATION: øFG02 reliably drives the in vivo evolution of A. baumannii AB900 towards a capsule-deficient, phage-resistant phenotype that is resensitised to ceftazidime. This mechanism highlights the clinical potential of using phage therapy to target A. baumannii and restore antibiotic activity. FUNDING: National Health and Medical Research Council (Australia).


Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteriophages/genetics , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Drug Resistance, Multiple, Bacterial , Humans , Mice , Microbial Sensitivity Tests
10.
Pathogens ; 10(7)2021 Jul 14.
Article En | MEDLINE | ID: mdl-34358044

Acanthamoeba Keratitis (AK) can lead to substantial vision loss and morbidity among contact lens wearers. Misdiagnosis or delayed diagnosis is a major factor contributing to poor outcomes of AK. This study aimed to assess the effect of two antibiotics and one anaesthetic drug used in the diagnosis and nonspecific management of keratitis on the autofluorescence patterns of Acanthamoeba and two common bacteria that may also cause keratitis. Acanthamoeba castellanii ATCC 30868, Pseudomonas aeruginosa ATCC 9027, and Staphylococcus aureus ATCC 6538 were grown then diluted in either PBS (bacteria) or » strength Ringer's solution (Acanthamoeba) to give final concentrations of 0.1 OD at 660 nm or 104 cells/mL. Cells were then treated with ciprofloxacin, tetracycline, tetracaine, or no treatment (naïve). Excitation-emission matrices (EEMs) were collected for each sample with excitation at 270-500 nm with increments in 5 nm steps and emission at 280-700 nm at 2 nm steps using a Fluoromax-4 spectrometer. The data were analysed using MATLAB software to produce smoothed color-coded images of the samples tested. Acanthamoeba exhibited a distinctive fluorescence pattern compared to bacteria. The addition of antibiotics and anaesthetic had variable effects on autofluorescence. Tetracaine altered the fluorescence of all three microorganisms, whereas tetracycline did not show any effect on the fluorescence. Ciprofloxacin produced changes to the fluorescence pattern for the bacteria, but not Acanthamoeba. Fluorescence spectroscopy was able to differentiate Acanthamoeba from P. aeruginosa and S. aureus in vitro. There is a need for further assessment of the fluorescence pattern for different strains of Acanthamoeba and bacteria. Additionally, analysis of the effects of anti-amoebic drugs on the fluorescence pattern of Acanthamoeba and bacteria would be prudent before in vivo testing of the fluorescence diagnostic approach in the animal models.

11.
Polymer (Guildf) ; 222: 123643, 2021 Apr 22.
Article En | MEDLINE | ID: mdl-33758430

The COVID-19 pandemic has highlighted the need for diversity in the market and alternative materials for personal protective equipment (PPE). Paper has high coatability for tunable barrier performance, and an agile production process, making it a potential substitute for polyolefin-derived PPE materials. Bleached and newsprint papers were laminated with polyethylene (PE) coatings of different thicknesses, and characterised for their potential use as medical gowns for healthcare workers and COVID-19 patients. Thicker PE lamination improved coating homogeneity and water vapour resistance. 49 GSM bleached paper with 16 GSM PE coating showed high tensile and seam strength, and low water vapour transmission rate (WVTR). Phi-X174 bacteriophage testing revealed that paper laminated with 15 GSM coating hinders virus penetration. This research demonstrates that PE laminated paper is a promising material for low cost viral protective gowns.

12.
Invest Ophthalmol Vis Sci ; 62(3): 33, 2021 03 01.
Article En | MEDLINE | ID: mdl-33755043

Purpose: Over a third of patients with Acanthamoeba keratitis (AK) experience severe inflammatory complications (SICs). This study aimed to determine if some contact lens (CL) wearers with AK were predisposed to SICs due to variations in key immune genes. Methods: CL wearers with AK who attended Moorfields Eye Hospital were recruited prospectively between April 2013 and October 2014. SICs were defined as scleritis and/or stromal ring infiltrate. Genomic DNA was processed with an Illumina Low Input Custom Amplicon assay of 58 single nucleotide polymorphism (SNP) targets across 18 genes and tested for association in PLINK. Results: Genomic DNA was obtained and analyzed for 105 cases of AK, 40 (38%) of whom experienced SICs. SNPs in the CXCL8 gene encoding IL-8 was significantly associated with protection from SICs (chr4: rs1126647, odds ratio [OR] = 0.3, P = 0.005, rs2227543, OR = 0.4, P = 0.007, and rs2227307, OR = 0.4, P = 0.02) after adjusting for age, sex, steroids prediagnosis, and herpes simplex keratitis (HSK) misdiagnosis. Two TLR-4 SNPs were associated with increased risk of SICs (chr9: rs4986791 and rs4986790, both OR = 6.9, P = 0.01). Th-17 associated SNPs (chr1: IL-23R rs11209026, chr2: IL-1ß rs16944, and chr12: IL-22 rs1179251) were also associated with SICs. Conclusions: The current study identifies biologically relevant genetic variants in patients with AK with SICs; IL-8 is associated with a strong neutrophil response in the cornea in AK, TLR-4 is important in early AK disease, and Th-17 genes are associated with adaptive immune responses to AK in animal models. Genetic screening of patients with AK to predict severity is viable and this would be expected to assist disease management.


Acanthamoeba Keratitis/genetics , Adaptive Immunity/genetics , Immunity, Innate/genetics , Inflammation/genetics , Polymorphism, Single Nucleotide , Scleritis/genetics , Toll-Like Receptor 4/genetics , Acanthamoeba Keratitis/etiology , Adult , Contact Lenses/adverse effects , Disease Susceptibility , Female , Humans , Male , Middle Aged , Prospective Studies , Scleritis/etiology , Th17 Cells/immunology , Young Adult
13.
Pathogens ; 10(2)2021 Feb 18.
Article En | MEDLINE | ID: mdl-33670718

Acanthamoeba, an opportunistic pathogen is known to cause an infection of the cornea, central nervous system, and skin. Acanthamoeba feeds different microorganisms, including potentially pathogenic prokaryotes; some of microbes have developed ways of surviving intracellularly and this may mean that Acanthamoeba acts as incubator of important pathogens. A systematic review of the literature was performed in order to capture a comprehensive picture of the variety of microbial species identified within Acanthamoeba following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Forty-three studies met the inclusion criteria, 26 studies (60.5%) examined environmental samples, eight (18.6%) studies examined clinical specimens, and another nine (20.9%) studies analysed both types of samples. Polymerase chain reaction (PCR) followed by gene sequencing was the most common technique used to identify the intracellular microorganisms. Important pathogenic bacteria, such as E. coli, Mycobacterium spp. and P. aeruginosa, were observed in clinical isolates of Acanthamoeba, whereas Legionella, adenovirus, mimivirus, and unidentified bacteria (Candidatus) were often identified in environmental Acanthamoeba. Increasing resistance of Acanthamoeba associated intracellular pathogens to antimicrobials is an increased risk to public health. Molecular-based future studies are needed in order to assess the microbiome residing in Acanthamoeba, as a research on the hypotheses that intracellular microbes can affect the pathogenicity of Acanthamoeba infections.

14.
mSystems ; 6(1)2021 Feb 16.
Article En | MEDLINE | ID: mdl-33594003

T-series phages have been model organisms for molecular biology since the 1940s. Given that these phages have been stocked, distributed, and propagated for decades across the globe, there exists the potential for genetic drift to accumulate between stocks over time. Here, we compared the temporal stability and genetic relatedness of laboratory-maintained phage stocks with a T-series collection from 1972. Only the T-even phages produced viable virions. We obtained complete genomes of these T-even phages, along with two contemporary T4 stocks. Performing comparative genomics, we found 12 and 16 nucleotide variations, respectively, in the genomes of T2 and T6, whereas there were ∼172 nucleotide variations between T4 sublines compared with the NCBI RefSeq genome. To account for the possibility of artifacts in NCBI RefSeq, we used the 1972 T4 stock as a reference and compared genetic and phenotypic variations between T4 sublines. Genomic analysis predicted nucleotide variations in genes associated with DNA metabolism and structural proteins. We did not, however, observe any differences in growth characteristics or host range between the T4 sublines. Our study highlights the potential for genetic drift between individually maintained T-series phage stocks, yet after 48 years, this has not resulted in phenotypic alterations in these important model organisms.IMPORTANCE T-series bacteriophages have been used throughout the world for various molecular biology researches, which were critical for establishing the fundamentals of molecular biology, from the structure of DNA to advanced gene-editing tools. These model bacteriophages help keep research data consistent and comparable between laboratories. However, we observed genetic variability when we compared contemporary sublines of T4 phages to a 48-year-old stock of T4. This may have effects on the comparability of results obtained using T4 phage. Here, we highlight the genomic differences between T4 sublines and examined phenotypic differences in phage replication parameters. We observed limited genomic changes but no phenotypic variations between T4 sublines. Our research highlights the possibility of genetic drift in model bacteriophages.

15.
Nat Microbiol ; 6(2): 157-161, 2021 02.
Article En | MEDLINE | ID: mdl-33432151

We characterized two bacteriophages, ΦFG02 and ΦCO01, against clinical isolates of Acinetobacter baumannii and established that the bacterial capsule is the receptor for these phages. Phage-resistant mutants harboured loss-of-function mutations in genes responsible for capsule biosynthesis, resulting in capsule loss and disruption of phage adsorption. The phage-resistant strains were resensitized to human complement, beta-lactam antibiotics and alternative phages and exhibited diminished fitness in vivo. Using a mouse model of A. baumannii infection, we showed that phage therapy was effective.


Acinetobacter Infections/microbiology , Acinetobacter Infections/therapy , Acinetobacter baumannii/virology , Anti-Bacterial Agents/pharmacology , Bacteriophages/physiology , Phage Therapy , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Animals , Bacterial Capsules/virology , Complement System Proteins/pharmacology , Disease Models, Animal , Drug Resistance, Bacterial , Female , Humans , Loss of Function Mutation , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , beta-Lactamase Inhibitors/pharmacology
16.
Ocul Surf ; 19: 169-175, 2021 01.
Article En | MEDLINE | ID: mdl-32497656

PURPOSE: The ocular surface microbiota are recognised as one of causative microorganisms in post-procedural endophthalmitis but in many cases the vitreous tap is culture negative. This study investigated bacterial contamination of intravitreal (IVT) needles using multiple approaches covering culturing, 16S rRNA gene sequencing, fluorescent in situ hybridisation (FISH) and scanning electron microscopy (SEM). METHODS: IVT needles were obtained immediately after injection from patients undergoing treatment for predominantly age-related macular degeneration. Eighteen needles were analysed by culturing on chocolate blood agar. In addition, 40 needles were analysed by extracting DNA and paired-end sequencing of the 16S rRNA gene. Sequences were quality filtered (USEARCH), taxonomically classified (SILVA) and contaminant filtered (DECONTAM). Nine needles were analysed by either FISH using the bacterial probe EUB338 or SEM. RESULTS: Using culturing, three bacteria were identified from 5 of 18 needles (28%) - Kocuria kristinae, Staphylococcus hominis and Sphingomonas paucimobilis. The negative control needles showed no growth. Following rigorous data filtering, bacterial community analysis using 16S rRNA gene sequencing showed the presence of predominantly Corynebacterium but also Pseudomonas, Acinetobacter, Sphingomonas, Staphylococcus and Bacillus on the needles. Cocci-shaped cells in a tetrad formation were observed using FISH, while SEM images showed cocci-shaped bacteria in pairs and irregular tetrads. CONCLUSIONS: The study showed evidence for a large diversity of bacteria on IVT needles and visually confirmed their adherence. The diversity was similar to that found on the ocular surface and in conjunctival tissue. This suggests the risk of exogenous endophthalmitis remains even with sterilization of the conjunctival surface.


Microbiota , Needles , Humans , Micrococcaceae , RNA, Ribosomal, 16S/genetics , Sphingomonas
17.
Eur Respir J ; 57(6)2021 06.
Article En | MEDLINE | ID: mdl-33303543

INTRODUCTION: Nosocomial transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a major feature of the COVID-19 pandemic. Evidence suggests patients can auto-emit aerosols containing viable viruses; these aerosols could be further propagated when patients undergo certain treatments, including continuous positive airway pressure (PAP) therapy. Our aim was to assess 1) the degree of viable virus propagated from PAP circuit mask leak and 2) the efficacy of a ventilated plastic canopy to mitigate virus propagation. METHODS: Bacteriophage phiX174 (108 copies·mL-1) was nebulised into a custom PAP circuit. Mask leak was systematically varied at the mask interface. Plates containing Escherichia coli host quantified viable virus (via plaque forming unit) settling on surfaces around the room. The efficacy of a low-cost ventilated headboard created from a tarpaulin hood and a high-efficiency particulate air (HEPA) filter was tested. RESULTS: Mask leak was associated with virus contamination in a dose-dependent manner (χ2=58.24, df=4, p<0.001). Moderate mask leak (≥21 L·min-1) was associated with virus counts equivalent to using PAP with a vented mask. The highest frequency of viruses was detected on surfaces <1 m away; however, viable viruses were recorded up to 3.86 m from the source. A plastic hood with HEPA filtration significantly reduced viable viruses on all plates. HEPA exchange rates ≥170 m3·h-1 eradicated all evidence of virus contamination. CONCLUSIONS: Mask leak from PAP may be a major source of environmental contamination and nosocomial spread of infectious respiratory diseases. Subclinical mask leak levels should be treated as an infectious risk. Low-cost patient hoods with HEPA filtration are an effective countermeasure.


COVID-19 , Pandemics , Aerosols , Humans , Masks , Respiration, Artificial , SARS-CoV-2
18.
Infect Genet Evol ; 85: 104574, 2020 11.
Article En | MEDLINE | ID: mdl-32992031

Fluoroquinolones are widely used as an empirical therapy for pseudomonal ocular infections. Based on increasing reports on acquired fluoroquinolone resistance genes in clinical isolates of Pseudomonas aeruginosa, we investigated 33 strains of P. aeruginosa isolated from the cornea of microbial keratitis patients in India and Australia between 1992 and 2018 to understand the prevalence of acquired fluoroquinolone resistance genes in ocular isolates and to assess whether the possession of those genes was associated with fluoroquinolone susceptibility. Fourteen out of 33 strains were resistant to at least one fluoroquinolone. We obtained the whole genome sequence of 33 isolates using Illumina MiSeq platform and investigated the prevalence of two fluoroquinolone resistance genes crpP and qnrVC1. To examine the associated mobile genetic elements of qnrVC1 positive strains, we obtained long read sequences using Oxford Nanopore MinION and performed hybrid assembly to combine long reads with Illumina short sequence reads. We further assessed mutations in quinolone resistance determining regions (QRDRs) and antibiotic susceptibilities to ciprofloxacin, levofloxacin and moxifloxacin to examine the association between resistance genes and phenotype. Twenty strains possessed crpP in genetic islands characterised by possession of integrative conjugative elements. The qnrVC1 gene was carried by four isolates on class I integrons and Tn3 transposons along with aminoglycoside and beta-lactam resistance genes. We did not observe any evidence of plasmids carrying fluoroquinolone resistance genes. Resistance to fluoroquinolones was observed in those strains which possessed crpP, qnrVC1 and that had QRDRs mutations. The presence of crpP on its own was not associated with increased resistance to fluoroquinolones.


Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Fluoroquinolones/pharmacology , Genes, Bacterial , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/therapeutic use , Cornea/microbiology , Fluoroquinolones/therapeutic use , Humans , Keratitis/drug therapy , Keratitis/microbiology , Keratitis/pathology , Pseudomonas Infections/drug therapy
19.
Cureus ; 12(4): e7496, 2020 Apr 01.
Article En | MEDLINE | ID: mdl-32368428

Drug-induced pancreatitis is a rare entity. The diagnostic criteria for drug-induced pancreatitis include the development of pancreatitis during drug therapy, elimination of all other possible causes, resolution with discontinuation of the offending drug, and reappearance on using the same drug. Several drugs have been implicated in having an association with pancreatitis. Tetracyclines are considered to be a Class I medication (medications implicated in greater than 20 reported cases of acute pancreatitis). However, there are very few reported cases of doxycycline-induced acute pancreatitis. We report the case of a 55-year old male who presented to the emergency department (ED) with three days of progressively severe and constant mid-epigastric abdominal pain. On evaluation, he was found to have elevated lipase levels. Computed tomography (CT) scan of his abdomen revealed findings consistent with pancreatitis without any evidence of gallstones or common bile duct dilation. He denied alcohol use, trauma, and insect bites or stings. His calcium and triglyceride levels were within normal limits. His blood cultures did not show any bacterial growth. He had recently been initiated on doxycycline for concerns of cellulitis and had begun to develop abdominal pain seven days after the initiation of doxycycline. He had completed his antibiotic course on the day of presentation to the ED. He had no other recent medication changes. He had subsequent improvement of symptoms off of the doxycycline and with supportive care. Given that all other causes of pancreatitis had been excluded and that he had been initiated on doxycycline prior to presentation, the etiology was attributed to being likely secondary to doxycycline use. Our case highlights the importance of reviewing outpatient medications by the hospital medicine team and awareness of rare triggers for acute pancreatitis.

20.
Clin Exp Optom ; 103(6): 782-786, 2020 11.
Article En | MEDLINE | ID: mdl-32227362

BACKGROUND: This study examined the prevalence of free-living Acanthamoeba in domestic tap water in the greater Sydney region, Australia, and determined any seasonal variation in prevalence. METHODS: Fifty-four participants were included in this study following approval from an institutional human research ethics committee. Each participant self-collected two samples (one in summer and another in winter) from the surface of the drain of the bathroom sink using an instructional kit. The samples were cultured by inoculating onto a non-nutrient agar plate seeded with Escherichia coli and incubation at 32°C for two weeks. The plates were microscopically examined for the presence of free-living amoeba. DNA was isolated from 20 samples and a polymerase chain reaction (PCR) assay was performed for amplification of the partial sequence of the 18S ribosomal RNA gene. The PCR amplified products were sequenced using Sanger sequencing and genotyping was performed based on the variation in nucleotide sequences. RESULTS: A total of 97 samples were collected over the two collection periods, with 28.6 per cent of samples morphologically classified as Acanthamoeba. The summer period yielded 16 of 54 (29.6 per cent) samples classified as Acanthamoeba, while the winter period yielded 12 of 43 (27.9 per cent) samples classified as Acanthamoeba. There was no statistically significant difference (p = 0.85) between the prevalence of free-living Acanthamoeba in summer compared to winter. Phylogenetic analysis showed that 15 of 20 (75 per cent) isolates belonged to genotype T4, the most frequent genotype isolated in Acanthamoeba keratitis. CONCLUSION: The prevalence of free-living Acanthamoeba characterised morphologically in domestic tap water of the greater Sydney region was higher than expected, especially considering the low incidence of Acanthamoeba keratitis in Australia. However, this study did not find variation between seasons. As the T4 genotype was most common, Sydney-based practitioners must always consider Acanthamoeba as a possible causative organism in cases of microbial keratitis, regardless of the season.


Acanthamoeba Keratitis , Acanthamoeba , Acanthamoeba/genetics , Humans , Phylogeny , Prevalence , Seasons , Water
...