Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Occup Environ Hyg ; 19(1): 23-34, 2022 01.
Article in English | MEDLINE | ID: mdl-34747682

ABSTRACT

Face mask usage is one of the most effective ways to limit SARS-CoV-2 transmission, but a mask is only useful if user compliance is high. Through anonymous surveys (n = 679), it was shown that mask discomfort is the primary source of noncompliance in mask wearing. Further, through these surveys, three critical predicting variables that dictate mask comfort were identified: air resistance, water vapor permeability, and face temperature change. To validate these predicting variables in a physiological context, experiments (n = 9) were performed to measure the respiratory rate and change in face temperature while wearing different types of three commonly used masks. Finally, using values of these predicting variables from experiments and the literature, and surveys asking users to rate the comfort of various masks, three machine learning algorithms were trained and tested to generate overall comfort scores for those masks. Although all three models performed with an accuracy of approximately 70%, the multiple linear regression model provides a simple analytical expression to predict the comfort scores for common face masks provided the input predicting variables. As face mask usage is crucial during the COVID-19 pandemic, the goal of this quantitative framework to predict mask comfort is hoped to improve user experience and prevent discomfort-induced noncompliance.


Subject(s)
COVID-19 , Masks , Humans , Pandemics , SARS-CoV-2 , Surveys and Questionnaires
2.
J Occup Environ Hyg ; 18(12): 590-603, 2021 12.
Article in English | MEDLINE | ID: mdl-34569919

ABSTRACT

The COVID-19 pandemic has significantly impacted learning as many institutions switched to remote or hybrid instruction. An in-depth assessment of the risk of infection that considers environmental setting and mitigation strategies is needed to make safe and informed decisions regarding reopening university spaces. A quantitative model of infection probability that accounts for space-specific parameters is presented to enable assessment of the risk in reopening university spaces at given densities. The model uses the fraction of the campus population that are viral shedders, room capacity, face covering filtration efficiency, air exchange rate, room volume, and time spent in the space as parameters to calculate infection probabilities in teaching spaces, dining halls, dorms, and shared bathrooms. The model readily calculates infection probabilities in various university spaces, with face covering filtration efficiency and air exchange rate being among the dominant variables. When applied to university spaces, this model demonstrated that, under specific conditions that are feasible to implement, in-person classes could be held in large lecture halls with an infection risk over the semester <1%. Meal pick-ups from dining halls and usage of shared bathrooms in residential dormitories among small groups of students could also be accomplished with low risk. The results of applying this model to spaces at Harvard University (Cambridge and Allston campuses) and Stanford University are reported. Finally, a user-friendly web application was developed using this model to calculate infection probability following input of space-specific variables. The successful development of a quantitative model and its implementation through a web application may facilitate accurate assessments of infection risk in university spaces. However, since this model is thus far unvalidated, validation using infection rate and contact tracing data from university campuses will be crucial as such data becomes available at larger scales. In light of the impact of the COVID-19 pandemic on universities, this tool could provide crucial insight to students, faculty, and university officials in making informed decisions.


Subject(s)
COVID-19 , Universities , Humans , Pandemics , SARS-CoV-2 , Students
3.
Proc Natl Acad Sci U S A ; 116(10): 4018-4024, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30765527

ABSTRACT

Optical trapping has been implemented in many areas of physics and biology as a noncontact sample manipulation technique to study the structure and dynamics of nano- and mesoscale objects. It provides a unique approach for manipulating microscopic objects without inducing undesired changes in structure. Combining optical trapping with hard X-ray microscopy techniques, such as coherent diffraction imaging and crystallography, provides a nonperturbing environment where electronic and structural dynamics of an individual particle in solution can be followed in situ. It was previously shown that optical trapping allows the manipulation of micrometer-sized objects for X-ray fluorescence imaging. However, questions remain over the ability of optical trapping to position objects for X-ray diffraction measurements, which have stringent requirements for angular stability. Our work demonstrates that dynamic holographic optical tweezers are capable of manipulating single micrometer-scale anisotropic particles in a microfluidic environment with the precision and stability required for X-ray Bragg diffraction experiments-thus functioning as an "optical goniometer." The methodology can be extended to a variety of X-ray experiments and the Bragg coherent diffractive imaging of individual particles in solution, as demonstrated here, will be markedly enhanced with the advent of brighter, coherent X-ray sources.


Subject(s)
Microfluidic Analytical Techniques , Optical Tweezers , Particle Size , X-Ray Diffraction
4.
Nano Lett ; 18(6): 3391-3399, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29717877

ABSTRACT

The tremendous progress in nanoscience now allows the creation of static nanostructured materials for a broad range of applications. A further goal is to achieve dynamic and reconfigurable nanostructures. One approach involves nanoparticle-based optical matter, but so far, studies have only considered spherical constituents. A nontrivial issue is that nanoparticles with other shapes are expected to have different local electromagnetic field distributions and interactions with neighbors in optical-matter arrays. Therefore, one would expect their dynamics to be different as well. This paper reports the directed assembly of ordered arrays of gold nanoplatelets in optical line traps, demonstrating the reconfigurability of the array by altering the phase gradient via holographic-beam shaping. The weaker gradient forces and resultant slower motion of the nanoplatelets, as compared with plasmonic (Ag and Au) nanospheres, allow the precise study of their assembly and disassembly dynamics. Both temporal and spatial correlations are detected between particles separated by distances of hundreds of nanometers to several microns. Electrodynamics simulations reveal the presence of multipolar plasmon modes that induce short-range (near-field) and longer-range electrodynamic (e.g., optical binding) interactions. These interactions and the interferences between mutipolar plamon modes cause both the strong correlations and the nonuniform dynamics observed. Our study demonstrates new opportunities for the generation of complex addressable optical matter and the creation of novel active optical technology.

5.
Sci Rep ; 7(1): 16553, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29185459

ABSTRACT

Particle tracking, which is an essential tool in many fields of scientific research, uses algorithms that retrieve the centroid of tracked particles with sub-pixel accuracy. However, images in which the particles occupy a small number of pixels on the detector, are in close proximity to other particles or suffer from background noise, show a systematic error in which the particle sub-pixel positions are biased towards the center of the pixel. This "pixel locking" effect greatly reduces particle tracking accuracy. In this report, we demonstrate the severity of these errors by tracking experimental (and simulated) imaging data of optically trapped silver nanoparticles and single fluorescent proteins. We show that errors in interparticle separation, angle and mean square displacement are significantly reduced by applying the corrective Single-Pixel Interior Filling Function (SPIFF) algorithm. Our work demonstrates the potential ubiquity of such errors and the general applicability of SPIFF correction to many experimental fields.

6.
Nano Lett ; 17(11): 6548-6556, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28961013

ABSTRACT

We examine the formation and concomitant rotation of electrodynamically bound dimers (EBD) of 150 nm diameter Ag nanoparticles trapped in circularly polarized focused Gaussian beams. The rotation frequency of an EBD increases linearly with the incident beam power, reaching mean values of ∼4 kHz for relatively low incident powers of 14 mW. Using a coupled-dipole/effective polarizability model, we reveal that retardation of the scattered fields and electrodynamic interactions can lead to a "negative torque" causing rotation of the EBD in the direction opposite to that of the circular polarization. This intriguing opposite-handed rotation due to negative torque is clearly demonstrated using electrodynamics-Langevin dynamics simulations by changing particle separations and thus varying the retardation effects. Finally, negative torque is also demonstrated in experiments from statistical analysis of the EBD trajectories. These results demonstrate novel rotational dynamics of nanoparticles in optical matter using circular polarization and open a new avenue to control orientational dynamics through coupling to interparticle separation.

7.
Phys Rev E ; 95(2-1): 022604, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28298004

ABSTRACT

To date investigations of the dynamics of driven colloidal systems have focused on hydrodynamic interactions and often employ optical (laser) tweezers for manipulation. However, the optical fields that provide confinement and drive also result in electrodynamic interactions that are generally neglected. We address this issue with a detailed study of interparticle dynamics in an optical ring vortex trap using 150-nm diameter Ag nanoparticles. We term the resultant electrodynamically interacting nanoparticles a driven optical matter system. We also show that a superior trap is created by using a Au nanoplate mirror in a retroreflection geometry, which increases the electric field intensity, the optical drive force, and spatial confinement. Using nanoparticles versus micron sized colloids significantly reduces the surface hydrodynamic friction allowing us to access small values of optical topological charge and drive force. We quantify a further 50% reduction of hydrodynamic friction when the nanoparticles are driven over the Au nanoplate mirrors versus over a mildly electrostatically repulsive glass surface. Further, we demonstrate through experiments and electrodynamics-Langevin dynamics simulations that the optical drive force and the interparticle interactions are not constant around the ring for linearly polarized light, resulting in a strong position-dependent variation in the nanoparticle velocity. The nonuniformity in the optical drive force is also manifest as an increase in fluctuations of interparticle separation, or effective temperature, as the optical driving force is increased. Finally, we resolve an open issue in the literature on periodic modulation of interparticle separation with comparative measurements of driven 300-nm-diameter polystyrene beads that also clearly reveal the significance of electrodynamic forces and interactions in optically driven colloidal systems. Therefore, the modulations in the optical forces and electrodynamic interactions that we demonstrate should not be neglected for dielectric particles and might give rise to some structural and dynamic features that have previously been attributed exclusively to hydrodynamic interactions.

SELECTION OF CITATIONS
SEARCH DETAIL