Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Oral Pathol Med ; 52(9): 849-859, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37573872

ABSTRACT

BACKGROUND: Translationally controlled tumour protein (TCTP) is a multifunctional protein elevated in multiple cancers. However, studies on its role in oral carcinogenesis and prognosis are rare. We recently reported the role of its interacting partner, MCL1, in oral cancer progression and outcome. Hence, the present study aimed to assess TCTP expression in oral tumorigenesis and its association with patient outcomes alone and in combination with MCL1. METHODS: TCTP expression was assessed by immunohistochemistry and immunoblotting in oral tissues and cells, respectively. Cell viability post siRNA/dihydroartemisinin treatment was analysed by tetrazolium salt assay. Cell survival, invasion and tumorigenic potential post TCTP knockdown were assessed by clonogenic, Matrigel and soft-agar assays, respectively. The association of TCTP with patient outcome was analysed by Kaplan-Meier and Cox regression. RESULTS: TCTP was significantly overexpressed in oral premalignant lesions (p < 0.0001), oral tumours (p < 0.0001) and oral dysplastic and cancer cells versus normal oral mucosa and also in recurrent (p < 0.05) versus non-recurrent oral tumours. Further, elevated TCTP was significantly (p < 0.05) associated with poor recurrence free survival (RFS) and poor overall survival (OS; hazard ratio = 2.29; p < 0.05). Intriguingly, the high co-expression of TCTP and MCL1 further reduced the RFS (p < 0.05) and OS (p < 0.05; hazard-ratio = 3.49; p < 0.05). Additionally, TCTP knockdown decreased survival (p < 0.05), invasion (p < 0.01) and in vitro tumorigenic potential (p < 0.0001). Dihydroartemisinin treatment reduced TCTP levels and viability of oral cancer cells. CONCLUSION: Our studies demonstrate an oncogenic role of TCTP in oral cancer progression and poor outcome. Thus, TCTP may be a potential prognostic marker and therapeutic target in oral cancers.


Subject(s)
Artemisinins , Mouth Neoplasms , Humans , Artemisinins/pharmacology , Artemisinins/therapeutic use , Biomarkers, Tumor/metabolism , Mouth Neoplasms/genetics , Myeloid Cell Leukemia Sequence 1 Protein , Tumor Protein, Translationally-Controlled 1
2.
Mol Divers ; 27(3): 1359-1374, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35909144

ABSTRACT

Elevated expression of anti-apoptotic proteins, such as Bcl-2 and Mcl-1 contributes to poor prognosis and resistance to current treatment modalities in multiple cancers. Here, we report the design, synthesis and characterization of benzimidazole chalcone and flavonoid scaffold-derived bicyclic compounds targeting both Bcl-2 and Mcl-1 by optimizing the structural differences in the binding sites of both these proteins. Initial docking screen of Bcl-2 and Mcl-1 with pro-apoptotic protein Bim revealed possible hits with optimal binding energies. All the optimized bicyclic compounds were screened for their in vitro cytotoxic activity against two oral cancer cell lines (AW8507 and AW13516) which express high levels of Bcl-2 and Mcl-1. Compound 4d from the benzimidazole chalcone series and compound 6d from the flavonoid series exhibited significant cytotoxic activity (IC50 7.12 µM and 17.18 µM, respectively) against AW13516 cell line. Time Resolved-Fluorescence Resonance Energy Transfer (TR-FRET) analysis further demonstrated that compound 4d and compound 6d could effectively inhibit the Bcl-2 and Mcl-1 proteins by displacing their BH3 binding partners. Both compounds exhibited potent activation of canonical pathway of apoptosis evident from appearance of cleaved Caspase-3 and PARP. Further, treatment of oral cancer cells with the inhibitors induced dissociation of the BH3 only protein Bim from Mcl-1 and Bak from Bcl-2 but failed to release Bax from Bcl-xL thereby confirming the nature of compounds as BH3-mimetics selectively targeting Bcl-2 and Mcl-1. Our study thus identifies bicyclic compounds as promising candidates for anti-apoptotic Bcl-2/Mcl-1 dual inhibitors with a potential for further development.


Subject(s)
Chalcones , Mouth Neoplasms , Humans , Chalcones/pharmacology , bcl-X Protein/metabolism , bcl-X Protein/pharmacology , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2 Homologous Antagonist-Killer Protein/pharmacology , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/pharmacology , Apoptosis , Bridged Bicyclo Compounds/pharmacology , Benzimidazoles/pharmacology , Cell Line, Tumor
3.
Explor Target Antitumor Ther ; 3(3): 278-296, 2022.
Article in English | MEDLINE | ID: mdl-36045907

ABSTRACT

The antiapoptotic B cell lymphoma-2 (Bcl-2) family members are apical regulators of the intrinsic pathway of apoptosis that orchestrate mitochondrial outer membrane permeabilization (MOMP) through interactions with their proapoptotic counterparts. Overexpression of antiapoptotic Bcl-2 family proteins has been linked to therapy resistance and poor prognosis in diverse cancers. Among the antiapoptotic Bcl-2 family members, predominant overexpression of the prosurvival myeloid cell leukemia-1 (Mcl-1) has been reported in a myriad of hematological malignancies and solid tumors, contributing to therapy resistance and poor outcomes, thus making it a potential druggable target. The unique structure of Mcl-1 and its complex regulatory mechanism makes it an adaptive prosurvival switch that ensures tumor cell survival despite therapeutic intervention. This review focusses on diverse mechanisms adopted by tumor cells to maintain sustained elevated levels of Mcl-1 and how high Mcl-1 levels contribute to resistance in conventional as well as targeted therapies. Moreover, recent developments in the Mcl-1-targeted therapeutics and the underlying challenges and considerations in designing novel Mcl-1 inhibitors are also discussed.

4.
Molecules ; 27(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35956818

ABSTRACT

Deciphering the protein posttranslational modification (PTM) code is one of the greatest biochemical challenges of our time. Phosphorylation and ubiquitylation are key PTMs that dictate protein function, recognition, sub-cellular localization, stability, turnover and fate. Hence, failures in their regulation leads to various disease. Chemical protein synthesis allows preparation of ubiquitinated and phosphorylated proteins to study their biochemical properties in great detail. However, monitoring these modifications in intact cells or in cell extracts mostly depends on antibodies, which often have off-target binding. Here, we report that the most widely used antibody for ubiquitin (Ub) phosphorylated at serine 65 (pUb) has significant off-targets that appear during mitosis. These off-targets are connected to polo-like kinase 1 (PLK1) mediated phosphorylation of cell cycle-related proteins and the anaphase promoting complex subunit 1 (APC1).


Subject(s)
Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome , Cell Cycle Proteins , Mitosis , Protein Processing, Post-Translational , Ubiquitin , Antibodies/genetics , Antibodies/metabolism , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , HeLa Cells , Humans , Mitosis/genetics , Mitosis/physiology , Phosphorylation , Protein Binding/genetics , Protein Binding/physiology , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Serine/genetics , Serine/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination , Polo-Like Kinase 1
5.
Nat Commun ; 12(1): 6173, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702852

ABSTRACT

The proteasome, the primary protease for ubiquitin-dependent proteolysis in eukaryotes, is usually found as a mixture of 30S, 26S, and 20S complexes. These complexes have common catalytic sites, which makes it challenging to determine their distinctive roles in intracellular proteolysis. Here, we chemically synthesize a panel of homogenous ubiquitinated proteins, and use them to compare 20S and 26S proteasomes with respect to substrate selection and peptide-product generation. We show that 20S proteasomes can degrade the ubiquitin tag along with the conjugated substrate. Ubiquitin remnants on branched peptide products identified by LC-MS/MS, and flexibility in the 20S gate observed by cryo-EM, reflect the ability of the 20S proteasome to proteolyze an isopeptide-linked ubiquitin-conjugate. Peptidomics identifies proteasome-trapped ubiquitin-derived peptides and peptides of potential 20S substrates in Hi20S cells, hypoxic cells, and human failing-heart. Moreover, elevated levels of 20S proteasomes appear to contribute to cell survival under stress associated with damaged proteins.


Subject(s)
Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Cell Hypoxia , Cell Survival , Heart Failure/metabolism , Heart Failure/pathology , Humans , Peptides/chemistry , Peptides/metabolism , Protein Conformation , Proteolysis , Substrate Specificity , Ubiquitin/chemistry , Ubiquitinated Proteins/chemistry , Ubiquitinated Proteins/metabolism , Ubiquitination
6.
Chem Commun (Camb) ; 57(74): 9438-9441, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34528945

ABSTRACT

Protein post-translational modifications are involved in essentially all aspects of cellular signaling. Their dynamic nature and the difficulties in installing them using enzymatic approaches limits their direct study in human cells. Reported herein is the first synthesis, delivery and cellular study of a stable phosphoubiquitin probe. Our results compare Parkin's substrate preference during mitophagy via direct visualization of a phosphorylated ubiquitin probe in the cellular environment.


Subject(s)
Molecular Probes/metabolism , Ubiquitin/metabolism , Cell Line, Tumor , Humans , Molecular Probes/chemistry , Molecular Structure , Phosphorylation , Protein Processing, Post-Translational , Ubiquitin/chemistry
7.
Redox Biol ; 45: 102047, 2021 09.
Article in English | MEDLINE | ID: mdl-34175667

ABSTRACT

The contribution of the Ubiquitin-Proteasome System (UPS) to mitophagy has been largely attributed to the E3 ubiquitin ligase Parkin. Here we show that in response to the oxidative stress associated with hypoxia or the hypoxia mimic CoCl2, the damaged and fragmented mitochondria are removed by Parkin-independent mitophagy. Mitochondria isolated from hypoxia or CoCl2-treated cells exhibited extensive ubiquitination, predominantly Lysine 48-linked and involves the degradation of key mitochondrial proteins such as the mitofusins MFN1/2, or the import channel component TOM20. Reflecting the critical role of mitochondrial protein degradation, proteasome inhibition blocked CoCl2-induced mitophagy. The five conserved ubiquitin-binding autophagy receptors (p62, NDP52, Optineurin, NBR1, TAX1BP1) were dispensable for the ensuing mitophagy, suggesting that the mitophagy step itself was independent of ubiquitination. Instead, the expression of two ubiquitin-independent mitophagy receptor proteins BNIP3 and NIX was induced by hypoxia or CoCl2-treatment followed by their recruitment to the oxidation-damaged mitochondria. By employing BNIP3/NIX double knockout and DRP1-null cell lines, we confirmed that mitochondrial clearance relies on DRP1-dependent mitochondrial fragmentation and BNIP3/NIX-mediated mitophagy. General antioxidants such as N-Acetyl Cysteine (NAC) or the mitochondria-specific Mitoquinone prevented HIF-1α stabilization, ameliorated hypoxia-related mitochondrial oxidative stress, and suppressed mitophagy. We conclude that the UPS and receptor-mediated autophagy converge to eliminate oxidation-damaged mitochondria.


Subject(s)
Mitochondria , Mitophagy , HeLa Cells , Humans , Hypoxia/metabolism , Mitochondria/metabolism , Oxidative Stress , Ubiquitination
8.
Br J Cancer ; 125(4): 547-560, 2021 08.
Article in English | MEDLINE | ID: mdl-34079080

ABSTRACT

BACKGROUND: Overexpression of anti-apoptotic MCL-1 protein in oral squamous cell carcinoma (OSCC) is linked to disease progression, therapy resistance and poor outcome. Despite its characteristic short half-life owing to ubiquitin-proteasome-dependent degradation, oral tumours frequently show elevated MCL-1 protein expression. Hence, we investigated the role of deubiquitinase USP9X in stabilising MCL-1 protein and its contribution to oral tumorigenesis. METHODS: Expression of MCL-1 and USP9X was assessed by immunoblotting and immunohistochemistry in oral cancer cell lines and tissues. The association between MCL-1 and USP9X was confirmed by coimmunoprecipitation and immunofluorescence. Cell death assessment was performed by MTT, flow cytometry and clonogenic assays. RESULTS: Both USP9X and MCL-1 are significantly elevated in oral premalignant lesions and oral tumours versus normal mucosa. USP9X interacts with and deubiquitinates MCL-1, thereby stabilising it. Pharmacological inhibition of USP9X potently induced cell death in OSCC cells in vitro and in vivo. The elevated expression of USP9X and MCL-1 correlated with poor prognosis in OSCC patients. CONCLUSION: We demonstrate the oncogenic role of USP9X in driving early-to-late stages of oral tumorigenesis via stabilisation of MCL-1, suggesting its potential as a prognostic biomarker and therapeutic target in oral cancers.


Subject(s)
Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/pathology , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Ubiquitin Thiolesterase/metabolism , Up-Regulation , Animals , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasm Staging , Neoplasm Transplantation , Prognosis , Protein Stability , Survival Analysis , Ubiquitin Thiolesterase/genetics , Ubiquitination
9.
Biomolecules ; 10(11)2020 11 16.
Article in English | MEDLINE | ID: mdl-33207558

ABSTRACT

Mitochondria are constantly subjected to stressful conditions due to their unique physiology and organization. The resulting damage leads to mitochondrial dysfunction, which underlies many pathophysiological conditions. Hence, constant surveillance is required to closely monitor mitochondrial health for sound maintenance of cellular metabolism and thus, for viability. In addition to internal mitochondrial chaperones and proteases, mitochondrial health is also governed by host cell protein quality control systems. The ubiquitin-proteasome system (UPS) and autophagy constitute the main pathways for removal of damaged or superfluous proteins in the cytosol, nucleus, and from certain organelles such as the Endoplasmic Reticulum (ER) and mitochondria. Although stress-induced ubiquitin-dependent degradation of mitochondrial outer membrane proteins has been widely studied, mechanisms of intramitochondrial protein ubiquitination has remained largely elusive due to the predominantly cytosolic nature of UPS components, separated from internal mitochondrial proteins by a double membrane. However, recent research has illuminated examples of intramitochondrial protein ubiquitination pathways and highlighted their importance under basal and stressful conditions. Owing to the dependence of mitochondria on the error-prone process of protein import from the cytosol, it is imperative that the cell eliminate any accumulated proteins in the event of mitochondrial protein import deficiency. Apparently, a significant portion of this activity involves ubiquitination in one way or another. In the present review article, following a brief introduction to mitochondrial protein quality control mechanisms, we discuss our recent understanding of intramitochondrial protein ubiquitination, its importance for basal function of mitochondria, metabolic implications, and possible therapeutic applications.


Subject(s)
Energy Metabolism/physiology , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Mitophagy/physiology , Ubiquitin/metabolism , Ubiquitination/physiology , Animals , Endoplasmic Reticulum/metabolism , Humans , Proteasome Endopeptidase Complex/metabolism , Proteolysis
10.
J Am Chem Soc ; 142(46): 19558-19569, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33136379

ABSTRACT

The maleimide group is a widely used reagent for bioconjugation of peptides, proteins, and oligonucleotides employing Michael addition and Diels-Alder cycloaddition reactions. However, the utility of this functionality in chemical synthesis of peptides and proteins remains unexplored. We report, for the first time that PdII complexes can mediate the efficient removal of various succinimide derivatives in aqueous conditions. Succinimide removal by PdII was applied for the synthesis of two ubiquitin activity-based probes (Ub-ABPs) employing solid phase chemical ligation (SPCL). SPCL was achieved through a sequential three segment ligation on a polymer support via a maleimide anchor. The obtained probes successfully formed the expected covalent complexes with deubiquitinating enzymes (DUBs) USP2 and USP7, highlighting the use of our new method for efficient preparation of unique synthetic proteins. Importantly, we demonstrate the advantages of our newly developed method for the protection and deprotection of native cysteine with a succinimide group in a peptide fragment derived from thioredoxin-1 (Trx-1) obtained via intein based expression to enable ligation/desulfurization and subsequent disulfide bond formation in a one-pot process.


Subject(s)
Coordination Complexes/chemistry , Cysteine/chemistry , Palladium/chemistry , Peptides/chemistry , Proteins/chemical synthesis , Succinimides/chemistry , Catalysis , Cycloaddition Reaction , Disulfides/chemistry , Globins/chemical synthesis , Inteins , Maleimides/chemistry , Solid-Phase Synthesis Techniques , Thiazolidines/chemistry , Thioredoxins/chemical synthesis , Ubiquitin/chemistry , Ubiquitin Thiolesterase/chemistry
11.
J Proteomics ; 229: 103949, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32882436

ABSTRACT

Strict quality control for mitochondrial proteins is necessary to ensure cell homeostasis. Two cellular pathways-Ubiquitin Proteasome System (UPS) and autophagy-contribute to mitochondrial homeostasis under stressful conditions. Here, we investigate changes to the mitochondria proteome and to the ubiquitin landscape at mitochondria in response to proteasome inhibition. Treatment of HeLa cells devoid of Parkin, the primary E3 ligase responsible for mitophagy, with proteasome inhibitor MG132 for a few hours caused mitochondrial oxidative stress and fragmentation, reduced energy output, and increased mitochondrial ubiquitination without inducing mitophagy. Overexpression of Parkin did not show any induction of mitophagy in response to MG132 treatment. Analysis of ubiquitin chains on isolated mitochondria revealed predominance of K48, K29 and K63-linked polyubiquitin. Interestingly, of all ubiquitinated mitochondrial proteins detected in response to MG132 treatment, a majority (≥90%) were intramitochondrial irrespective of Parkin expression. However, overall levels of these ubiquitinated mitochondrial proteins did not change significantly upon proteasome inhibition when evaluated by quantitative proteomics (LFQ and SILAC), suggesting that only a small portion are ubiquitinated under basal conditions. Another aspect of proteasome inhibition is significant enrichment of UPS, lysosomal and phagosomal components, and other heat shock proteins associated with isolated mitochondria. Taken together, our study highlights a critical role of UPS for ubiquitinating and removing imported proteins as part of a basal mitochondrial quality control system independent of Parkin. SIGNIFICANCE: As centers of cellular bioenergetics, numerous metabolic pathways and signaling cascades, the health of mitochondria is of utmost importance for ensuring cell survival. Due to their unique physiology, mitochondria are constantly subjected to damaging oxidative radicals (ROS) and protein import-related stress due to buildup of unfolded aggregate-prone proteins. Thus, for quality control purposes, mitochondria are constantly under surveillance by Autophagy and the Ubiquitin Proteasome System (UPS), both of which share ubiquitin as a common signal. The ubiquitin landscape of mitochondria has been studied in detail under stressful conditions, however, little is known about basal mitochondrial ubiquitination. Our study reveals that the extent of ubiquitination at mitochondria greatly increases upon proteasome inhibition, pointing to a large number of potential substrates for proteasomal degradation. Interestingly, most of the ubiquitination occurs on intramitochondrial proteins, components of the electron transport chain (ETC) and matrix-resident metabolic enzymes in particular. Moreover, numerous cytosolic UPS components, chaperones and autophagy-lysosomal proteins were recruited to mitochondria upon proteasome inhibition. Taken together, this suggests that the levels and functions of mitochondrial proteins are constantly regulated through ubiquitin-dependent proteasomal degradation even under basal conditions. Unclogging mitochondrial import channels may provide a mechanism to alleviate stress associated with mitochondrial protein import or to adapt cells according to their metabolic needs. Therefore, targeting the mitochondrial ubiquitination/deubiquitination machinery, such as improving the therapeutic potency of proteasome inhibitors, may provide an additional therapeutic arsenal against tumors.


Subject(s)
Mitochondria , Proteasome Endopeptidase Complex , HeLa Cells , Humans , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
12.
Dent Traumatol ; 2018 May 04.
Article in English | MEDLINE | ID: mdl-29729064

ABSTRACT

BACKGROUND/AIM: The type of storage media for short-term storage of an avulsed tooth is a critical determinant for the success of tooth replantation. If immediate replantation of an avulsed tooth is not possible, it is advised to store the tooth in a suitable storage medium. The viability and clonogenicity of periodontal ligament fibroblasts (PDLF) determines the success of replantation of an avulsed tooth. The aim of this study was to evaluate the effect on the clonogenic capacity of PDLF's upon storage in Hank's balanced salt solution (HBSS) and egg albumen. METHODS: Fibroblast cell culture was established from a human premolar tooth extracted for orthodontic purposes. The PDLF cells thus obtained were treated with either Dulbecco's modified Eagle's medium (DMEM; as a positive control), HBSS, or egg albumen for different durations at room temperature and then allowed to grow in DMEM medium until visible colonies appeared which were then fixed, stained, and scored manually. RESULTS: With increase in the duration of storage in both egg albumen as well as HBSS, there was a reduction in the clonogenic capacity of the PDLF's as compared to DMEM. However, storage in egg albumen led to a significant reduction in the clonogenic capacity of PDLF's (8%-16% for egg albumen) compared to HBSS (80%-90%). CONCLUSION: Due to its limited ability to support the clonogenicity of PDLF's, egg albumen is a poor storage medium for an avulsed tooth compared to either DMEM or HBSS.

13.
Oncotarget ; 8(36): 60060-60079, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28947954

ABSTRACT

We have previously reported overexpression of antiapoptotic MCL-1 protein in human oral cancers and its association with therapy resistance and poor prognosis, implying it to be a potential therapeutic target. Hence, we investigated the efficacy and mechanism of action of Obatoclax, a BH3 mimetic pan BCL-2 inhibitor in human oral cancer cell lines. All cell lines exhibited high sensitivity to Obatoclax with complete clonogenic inhibition at 200-400 nM concentration which correlated with their MCL-1 expression. Mechanistic insights revealed that Obatoclax induced a caspase-independent cell death primarily by induction of a defective autophagy. Suppression of autophagy by ATG5 downregulation significantly blocked Obatoclax-induced cell death. Further, Obatoclax induced interaction of p62 with key components of the necrosome RIP1K and RIP3K. Necrostatin-1 mediated inhibition of RIP1K significantly protected the cells from Obatoclax induced cell death. Moreover, Obatoclax caused extensive mitochondrial stress leading to their dysfunction. Interestingly, MCL-1 downregulation alone caused mitochondrial stress, highlighting its importance for mitochondrial homeostasis. We also demonstrated in vivo efficacy of Obatoclax against oral cancer xenografts and its synergism with ionizing radiation in vitro. Our studies thus suggest that Obatoclax induces autophagy-dependent necroptosis in oral cancer cells and holds a great promise in the improved management of oral cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL