Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2478, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509092

ABSTRACT

Biological cell membrane featuring smart mass-transport channels and sub-10 nm thickness was viewed as the benchmark inspiring the design of separation membranes; however, constructing highly connective and adaptive pore channels over large-area membranes less than 10 nm in thickness is still a huge challenge. Here, we report the design and fabrication of sub-8 nm networked cage nanofilms that comprise of tunable, responsive organic cage-based water channels via a free-interface-confined self-assembly and crosslinking strategy. These cage-bearing composite membranes display outstanding water permeability at the 10-5 cm2 s-1 scale, which is 1-2 orders of magnitude higher than that of traditional polymeric membranes. Furthermore, the channel microenvironments including hydrophilicity and steric hindrance can be manipulated by a simple anion exchange strategy. In particular, through ionically associating light-responsive anions to cage windows, such 'smart' membrane can even perform graded molecular sieving. The emergence of these networked cage-nanofilms provides an avenue for developing bio-inspired ultrathin membranes toward smart separation.

2.
Macromol Rapid Commun ; 45(8): e2300676, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38232334

ABSTRACT

Poly(ionic liquid) (PIL)-based porous membranes are extensively investigated as soft polymer actuators. While PILs have shown significant advancements in membrane fabrication and stabilization of metal nanoparticles (MNPs), research on integrating MNPs into porous membranes to achieve actuation behavior under multiple stimuli is limited. Herein, this work presents a new paradigm for designing a porous PIL-polyacrylic acid (PAA) membrane with a distinct MNP gradient via a top-bottom diffusion approach involving a metal salt precursor solution and NaBH4 as a reducing agent. The strong binding sites provided by PILs, combined with the gradient distribution of -COO- groups across the membrane cross-section, play a significant role in controlling the MNPs' gradient distribution. Interestingly, the MNPs within the membrane display excellent catalytic activity in exothermic reactions such as H2O2 decomposition, dissipating uneven heat that quickly permeates the membrane network. This induces asymmetrical swelling of polymer chains, resulting in rapid membrane bending. Furthermore, such MNP-loaded membrane could serve as a portable test paper for visually monitoring H2O2. This advancement paves the way for the development of intricate smart actuation materials and expands their practical applications in various real-life scenarios.


Subject(s)
Ionic Liquids , Metal Nanoparticles , Ionic Liquids/chemistry , Metal Nanoparticles/chemistry , Porosity , Polymers/chemistry , Acrylic Resins/chemistry , Membranes, Artificial , Hydrogen Peroxide/chemistry , Catalysis , Surface Properties , Particle Size
3.
Small Methods ; : e2301468, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38295090

ABSTRACT

The exploration of a facile approach to create structurally versatile substances carrying air-stable radicals is highly desired, but still a huge challenge in chemistry and materials science. Herein, a non-contact method to generate air-stable radicals by exposing pyridine/imidazole ring-bearing substances to volatile cyanuric chloride vapor, harnessed as a chemical fuel is reported. This remarkable feat is accomplished through a nucleophilic substitution reaction, wherein an intrinsic electron transfer event transpires spontaneously, originating from the chloride anion (Cl- ) to the cationic nitrogen (N+ ) atom, ultimately giving rise to pyridinium/imidazolium radicals. Impressively, the generated radicals exhibit noteworthy stability in the air over one month owing to the delocalization of the unpaired electron through the extended and highly fused π-conjugated pyridinium/imidazolium-triazine unit. Such an approach is universal to diverse substances, including organic molecules, metal-organic complexes, hydrogels, polymers, and organic cage materials. Capitalizing on this versatile technique, surface radical functionalization can be readily achieved across diverse substrates. Moreover, the generated radical species showcase a myriad of high-performance applications, including mimicking natural peroxidase to accelerate oxidation reactions and achieving high-efficiency near-infrared photothermal conversion and photothermal bacterial inhibition.

4.
Chem Commun (Camb) ; 59(40): 6020-6023, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37186246

ABSTRACT

A cage hybrid (C-Cage-PB) was developed by electrostatic complexation of a quaternary ammonium cage (C-Cage+) and an anionic inorganic Prussian blue (PB-). Given the unique synergy of the two parts, such a cage hybrid can be used as a promising platform for the efficient removal of toxic compounds in wastewater through adsorption, delivery or catalytic degradation via a Fenton oxidation reaction. In addition, C-Cage-PB can encapsulate Pd clusters, which amplifies the function of the hybrid for enhanced catalytic performance in the sequential degradation of toxic organic compounds and heavy metal pollution in wastewater treatment.

5.
ACS Appl Mater Interfaces ; 15(19): 23671-23678, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37142548

ABSTRACT

Incorporating metal nanoparticles (MNPs) into porous composites with controlled size and spatial distributions is beneficial for a broad range of applications, but it remains a synthetic challenge. Here, we present a method to immobilize a series of highly dispersed MNPs (Pd, Ir, Pt, Rh, and Ru) with controlled size (<2 nm) on hierarchically micro- and mesoporous organic cage supports. Specifically, the metal-ionic surfactant complexes serve as both metal precursors and mesopore-forming agents during self-assembly with a microporous imine cage CC3, resulting in a uniform distribution of metal precursors across the resultant supports. The functional heads on the ionic surfactants as binding sites, together with the nanoconfinement of pores, guide the nucleation and growth of MNPs and prevent their agglomeration after chemical reduction. Moreover, the as-synthesized Pd NPs exhibit remarkable activity and selectivity in the tandem reaction due to the advantages of ultrasmall particle size and improved mass diffusion facilitated by the hierarchical pores.

6.
Angew Chem Int Ed Engl ; 62(12): e202215591, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36691958

ABSTRACT

Multiple charge separation has been successfully realized by a proton-coupled electron transfer reaction in an organic cocrystal. Benefiting from the adjustable electronic energy level of the electron donor and acceptor through thermal-induced proton migration, distinct optical absorption behaviors combined with color changes to blue or green are observed in these charge-separated states. It is of interest to note that such charge-separated states exhibit a longer lifetime of over a month as a result of the excellent coplanarity and π-π interaction of the electron acceptors. Moreover, the enhanced absorption toward longer wavelengths endows the charge-separated state with near-infrared (808 nm) photothermal conversion for imaging and bacterial inhibition, whereby the conversion performance can be controlled by the degree of proton migration.

7.
Small ; 19(5): e2206127, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36440672

ABSTRACT

The pursuit of single-assembled molecular cage reactors for complex tandem reactions is a long-standing target in biomimetic catalysis but still a grand challenge. Herein, nanozyme-like organic cages are reported by engineering air-stable radicals into the skeleton upon photoinduced electron transfer. The generation of radicals is accompanied by single-crystal structural transformation and exhibits superior stability over six months in air. Impressively, the radicals throughout the cage skeleton can mimic the peroxidase of natural enzymes to decompose H2 O2 into OH· and facilitate oxidation reactions. Furthermore, an integrated catalyst by encapsulating Au clusters (glucose oxidase mimics) into the cage has been developed, in which the dual active sites (Au cluster and radical) are spatially isolated and can work as cascade nanozymes to prominently promote the enzyme-like tandem reaction via a substrate channeling effect.

8.
Macromol Rapid Commun ; 44(6): e2200846, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36573846

ABSTRACT

Stimuli-responsive nanoporous materials represent a newly emerging category of functional materials, for which instant and significant response behavior is strongly demanded but still challenging. Herein, a new kind of conjugated poly(ionic liquid)s (PILs) synthesized via a simple one-pot spontaneous nucleophilic substitution and polymerization between 4,4'-vinylenedipyridine and propargyl bromide is reported. A nanoporous membrane actuator is further developed via ionic complexation between the current PIL and trimesic acid. The actuator carries a gradient density in the hydrophobicity content along the membrane cross-section, which results in a fast response to moisture.


Subject(s)
Ionic Liquids , Nanopores , Stimuli Responsive Polymers , Polymerization
9.
Acc Chem Res ; 55(24): 3675-3687, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36469417

ABSTRACT

ConspectusDiscovering and constructing molecular functionality platforms for materials chemistry innovation has been a persistent target in the fields of chemistry, materials, and engineering. Around this task, basic scientific questions can be asked, novel functional materials can be synthesized, and efficient system functionality can be established. Poly(ionic liquid)s (PILs) have attracted growing interest far beyond polymer science and are now considered an interdisciplinary crossing point between multiple research areas due to their designable chemical structure, intriguing physicochemical properties, and broad and diverse applications. Recently, we discovered that 1,2,4-triazolium-type PILs show enhanced performance profiles, which are due to stronger and more abundant supramolecular interactions ranging from hydrogen bonding to metal coordination, when compared with structurally similar imidazolium counterparts. This phenomenon in our view can be related to the smart hydrogen atoms (SHAs), that is, any proton that binds to the carbon in the N-heterocyclic cations of 1,2,4-triazolium-type PILs. The replacement of one carbon by an electron-withdrawing nitrogen atom in the broadly studied heterocyclic imidazolium ring will further polarize the C-H bond (especially for C5-H) of the resultant 1,2,4-triazolium cation and establish new chemical tools for materials design. For instance, the H-bond-donating strength of the SHA, as well as its BroÌ·nsted acidity, is increased. Furthermore, polycarbene complexes can be readily formed even in the presence of weak or medium bases, which is by contrast rather challenging for imidazolium-type PILs. The combination of SHAs with the intrinsic features of heterocyclic cation-functionalized PILs (e.g., N-coordination capability and polymeric multibinding effects) enables new phenomena and therefore innovative materials applications.In this Account, recent progress on SHAs is presented. SHA-related applications in several research branches are highlighted together with the corresponding materials design at size scales ranging from nano- to micro- and macroscopic levels. At a nanoscopic level, it is possible to manipulate the interior and outer shapes and surface properties of PIL nanocolloids by adjusting the hydrogen bonds (H-bonds) between SHAs and water. Owing to the interplay of polycarbene structure, N-coordination, and the polymer multidentate binding of 1,2,4-triazolium-type PILs, metal clusters with controllable size at sub-nanometer scale were successfully synthesized and stabilized, which exhibited record-high catalytic performance in H2 generation via methanolysis of ammonia borane. At the microscopic level, SHAs are found to efficiently catalyze single crystal formation of structurally complex organics. Free protons in situ released from the SHAs serve as organocatalysts to activate formation of C-N bonds at room temperature in a series of imine-linked crystalline porous organics, such as organic cages, macrocycles and covalent organic frameworks; meanwhile the concurrent "salting-out" effect of PILs as polymers in solution accelerated the crystallization rate of product molecules by at least 1 order of magnitude. At the macroscopic scale, by finely regulating the supramolecular interactions of SHAs, a series of functional supramolecular porous polyelectrolyte membranes (SPPMs) with switchable pores and gradient cross-sectional structures were manufactured. These membranes demonstrate impressive figures of merit, ranging from chiral separation and proton recognition to switchable optical properties and real-time chemical reaction monitoring. Although the concept of SHAs is in the incipient stage of development, our successful examples of applications portend bright prospects for materials chemistry innovation.

10.
Small Methods ; 6(8): e2200591, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35708206

ABSTRACT

The controlled synthesis of subnanometer-sized metal clusters (MCs) presents a fascinating prospect for the research of size-dependent properties. In this study, a facile approach by employing porous racemic organic cage crystals as supports for immobilizing a broad range of noble MCs (e.g., Ru, Ir, Rh) is reported. Downsizing the support to the nanoscale leads to resultant MCs with precisely controlled sizes < 0.7 nm. Such enhanced stabilization ability is a result of enhanced metal-support interactions as well as the nanoconfinement of organic cages in controlling the growth of MCs. Moreover, the obtained MCs display excellent catalytic performance in a series of liquid-phase reactions owing to a decrease in the diffusion resistance from the substrate to MCs immobilized by the nano-sized cage support.

11.
Chemistry ; 28(40): e202201199, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35560996

ABSTRACT

The effective capture of iodine with high volatility and poisonousness is significant for reprocessing the spent nuclear fuel. In this article, we report a hierarchically porous poly(ionic liquid)-organic cage composite membrane (PIL@CC3) possessing a gradient content distribution of CC3 cage crystals throughout the membrane to capture iodine vapor. The introduction of microporous CC3 can significantly enhance the uptake capacity of iodine up to 980 mg g-1 , which is superior to that of a pristine PIL membrane carrying large meso- and macropores (99 mg g-1 ), and CC3 crystalline powder (662 mg g-1 ). Such enhanced performance benefits from the micro-meso-macroporous structure of the PIL@CC3 membrane in which the large meso- and macropores facilitate the mass transfer of iodine molecules from the external environment into the surface of the CC3 crystal, followed by diffusion of iodine molecules from the CC3 surface into the interior and exterior pores of the CC3 crystal. In addition, the asymmetric distribution of CC3 crystals across the PIL@CC3 membrane also displays its advantage in intercepting trace iodine, revealing its great potential for practical application. This study provides an idea for constructing hierarchically porous membrane composites for the removal of toxic vapors.

12.
Nat Commun ; 13(1): 1471, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35304468

ABSTRACT

The construction of hierarchically nanoporous composite for high-performance catalytic application is still challenging. In this work, a series of host-in-host ionic porous materials are crafted by encapsulating ionic organic cages into a hyper-crosslinked, oppositely charged porous poly(ionic liquid) (PoPIL) through an ion pair-directed assembly strategy. Specifically, the cationic cage (C-Cage) as the inner host can spatially accommodate a functional Au cluster, forming a [Au⊂C-Cage+]⊂PoPIL- supramolecular composite. This dual-host molecular hierarchy enables a charge-selective substrate sorting effect to the Au clusters, which amplifies their catalytic activity by at least one order of magnitude as compared to Au confined only by C-Cage as the mono-host (Au⊂C-Cage+). Moreover, we demonstrate that such dual-host porous system can advantageously immobilize electrostatically repulsive Au⊂C-Cage+ and cationic ferrocene co-catalyst (Fer+) together into the same microcompartments, and synergistically speed up the enzyme-like tandem reactions by channelling the substrate to the catalytic centers via nanoconfinement.

13.
Chem Asian J ; 17(4): e202101289, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-34964281

ABSTRACT

Metal clusters (MCs) with dimensions between a single metal atom and nanoparticles of >2 nm usually possess distinct geometric and electronic structures, and their outstanding performance in catalysis applications have underpinned a broad research interest. However, smaller-sized MCs are easily deactivated by migration coalescence during the catalysis process because of their high surface energy. Therefore, the search of an appropriate stabilizer for MCs is urgently demanded. In recent years, porous organic polymers (POPs) and organic molecular cages (OMCs), as emerging functional materials, have attracted significant attention. Benefiting from the spatial confinement, encapsulating MCs into these porous organic materials is a promising approach to guarantee the uniform size distribution and stability. In this review, we aim to provide a comprehensive summary of the recent progress in the synthetic strategies and catalysis applications of the encapsulated MCs, and seek to uncover promising ideas that can stimulate future developments at both the fundamental and applied levels.

14.
Angew Chem Int Ed Engl ; 60(22): 12490-12497, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33694301

ABSTRACT

Imparting mesopores to organic cages of an intrinsic microporous nature to build up hierarchically porous cage soft materials is a grand challenge and will reshape the property and application scope of traditional organic cage molecules. Herein, we discovered how to engineer mesopores into microporous organic cages via their host-guest interactions with long chain ionic surfactants. Equally important, the ionic head of surfactants equips the supramolecularly assembled porous structures with charge-selective uptake and release function in solution. Interestingly, such hierarchically porous organic cage can serve as a nanoreactor once trapping enzymes within the cavity, which show 5-fold enhanced activity of enzymatic catalysis when compared with the free enzymes.

15.
Chem Rev ; 120(17): 9363-9419, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32786418

ABSTRACT

Heteroatom-doped porous carbon materials (HPCMs) have found extensive applications in adsorption/separation, organic catalysis, sensing, and energy conversion/storage. The judicious choice of carbon precursors is crucial for the manufacture of HPCMs with specific usages and maximization of their functions. In this regard, polymers as precursors have demonstrated great promise because of their versatile molecular and nanoscale structures, modulatable chemical composition, and rich processing techniques to generate textures that, in combination with proper solid-state chemistry, can be maintained throughout carbonization. This Review comprehensively surveys the progress in polymer-derived functional HPCMs in terms of how to produce and control their porosities, heteroatom doping effects, and morphologies and their related use. First, we summarize and discuss synthetic approaches, including hard and soft templating methods as well as direct synthesis strategies employing polymers to control the pores and/or heteroatoms in HPCMs. Second, we summarize the heteroatom doping effects on the thermal stability, electronic and optical properties, and surface chemistry of HPCMs. Specifically, the heteroatom doping effect, which involves both single-type heteroatom doping and codoping of two or more types of heteroatoms into the carbon network, is discussed. Considering the significance of the morphologies of HPCMs in their application spectrum, potential choices of suitable polymeric precursors and strategies to precisely regulate the morphologies of HPCMs are presented. Finally, we provide our perspective on how to predefine the structures of HPCMs by using polymers to realize their potential applications in the current fields of energy generation/conversion and environmental remediation. We believe that these analyses and deductions are valuable for a systematic understanding of polymer-derived carbon materials and will serve as a source of inspiration for the design of future HPCMs.

16.
Angew Chem Int Ed Engl ; 59(49): 22109-22116, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32748542

ABSTRACT

The capability to significantly shorten the synthetic period of a broad spectrum of open organic materials presents an enticing prospect for materials processing and applications. Herein we discovered 1,2,4-triazolium poly(ionic liquid)s (PILs) could serve as a universal additive to accelerate by at least one order of magnitude the growth rate of representative imine-linked crystalline open organics, including organic cages, covalent organic frameworks (COFs), and macrocycles. This phenomenon results from the active C5-protons in poly(1,2,4-triazolium)s that catalyze the formation of imine bonds, and the simultaneous salting-out effect (induced precipitation by decreasing solubility) that PILs exert on these crystallizing species.

17.
Nature ; 579(7797): 73-79, 2020 03.
Article in English | MEDLINE | ID: mdl-32132690

ABSTRACT

The ability to grow properly sized and good quality crystals is one of the cornerstones of single-crystal diffraction, is advantageous in many industrial-scale chemical processes1-3, and is important for obtaining institutional approvals of new drugs for which high-quality crystallographic data are required4-7. Typically, single crystals suitable for such processes and analyses are grown for hours to days during which any mechanical disturbances-believed to be detrimental to the process-are carefully avoided. In particular, stirring and shear flows are known to cause secondary nucleation, which decreases the final size of the crystals (though shear can also increase their quantity8-14). Here we demonstrate that in the presence of polymers (preferably, polyionic liquids), crystals of various types grow in common solvents, at constant temperature, much bigger and much faster when stirred, rather than kept still. This conclusion is based on the study of approximately 20 diverse organic molecules, inorganic salts, metal-organic complexes, and even some proteins. On typical timescales of a few to tens of minutes, these molecules grow into regularly faceted crystals that are always larger (with longest linear dimension about 16 times larger) than those obtained in control experiments of the same duration but without stirring or without polymers. We attribute this enhancement to two synergistic effects. First, under shear, the polymers and their aggregates disentangle, compete for solvent molecules and thus effectively 'salt out' (that is, induce precipitation by decreasing solubility of) the crystallizing species. Second, the local shear rate is dependent on particle size, ultimately promoting the growth of larger crystals (but not via surface-energy effects as in classical Ostwald ripening). This closed-system, constant-temperature crystallization driven by shear could be a valuable addition to the repertoire of crystal growth techniques, enabling accelerated growth of crystals required by the materials and pharmaceutical industries.

18.
Chem Soc Rev ; 49(6): 1726-1755, 2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32096815

ABSTRACT

Poly(ionic liquid)s (PILs), as an innovative class of polyelectrolytes, are composed of polymeric backbones with IL species in each repeating unit. The combined merits of the polymers and ILs make them promising materials for composites in materials science. Particularly, the integration of PILs with functional substances (PIL composites) opens up a new dimension in utilizing ionic polymers by offering novel properties and improved functions, which impacts multiple subfields of our chemical society. This review summarizes recent developments of PIL composites with a special emphasis on the preparation techniques that are based on the intrinsic properties of the PILs and the synergistic effects between the PILs and substances of interest for diverse applications.

19.
Chem Sci ; 10(5): 1450-1456, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30809362

ABSTRACT

Exploration of metal clusters (MCs) adaptive to both aqueous and oil phases without disturbing their size is promising for a broad scope of applications. The state-of-the-art approach via ligand-binding may perturb MCs' size due to varied metal-ligand binding strength when shuttling between solvents of different polarity. Herein, we applied physical confinement of a series of small noble MCs (<1 nm) inside ionic organic cages (I-Cages), which by means of anion exchange enables reversible transfer of MCs between aqueous and hydrophobic solutions without varying their ultrasmall size. Moreover, the MCs@I-Cage hybrid serves as a recyclable, reaction-switchable catalyst featuring high activity in liquid-phase NH3BH3 (AB) hydrolysis reaction with a turnover frequency (TOF) of 115 min-1.

20.
Nat Commun ; 9(1): 1717, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29712899

ABSTRACT

Soft actuators with integration of ultrasensitivity and capability of simultaneous interaction with multiple stimuli through an entire event ask for a high level of structure complexity, adaptability, and/or multi-responsiveness, which is a great challenge. Here, we develop a porous polycarbene-bearing membrane actuator built up from ionic complexation between a poly(ionic liquid) and trimesic acid (TA). The actuator features two concurrent structure gradients, i.e., an electrostatic complexation (EC) degree and a density distribution of a carbene-NH3 adduct (CNA) along the membrane cross-section. The membrane actuator performs the highest sensitivity among the state-of-the-art soft proton actuators toward acetic acid at 10-6 mol L-1 (M) level in aqueous media. Through competing actuation of the two gradients, it is capable of monitoring an entire process of proton-involved chemical reactions that comprise multiple stimuli and operational steps. The present achievement constitutes a significant step toward real-life application of soft actuators in chemical sensing and reaction technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...