Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Sci Rep ; 14(1): 23153, 2024 10 05.
Article in English | MEDLINE | ID: mdl-39367161

ABSTRACT

Melatonin supplementation during in vitro maturation (IVM) improves porcine oocyte maturation and embryonic development by exerting antioxidative effects. Nevertheless, the mechanism by which melatonin prevents polyspermy after in vitro fertilization (IVF) remains unclear. Here, we examined the effects of melatonin on cytoplasmic maturation and the incidence of polyspermic penetration in porcine oocytes. No statistically significant difference was observed in the rate of first polar body formation between the groups (Control, Melatonin, Melatonin + Luzindole, and Melatonin + 4-P-PDOT). Interestingly, melatonin supplementation significantly improved the cytoplasmic maturation of porcine oocytes by enhancing the normal distribution of organelles (Golgi apparatus, endoplasmic reticulum and mitochondria) and upregulating organelle-related gene expressions (P < 0.05). However, these promotional effects were counteracted by melatonin antagonists, suggesting that melatonin enhances cytoplasmic maturation through its receptors in porcine oocytes. Melatonin supplementation also significantly improved the rate of diploid and blastocyst formation after IVF by promoting the normal distribution of cortical granules (P < 0.05). In conclusion, melatonin supplementation during in vitro maturation of porcine oocyte improves fertilization efficiency and embryonic developmental competence by enhancing cytoplasmic maturation.


Subject(s)
Fertilization in Vitro , Melatonin , Oocytes , Receptor, Melatonin, MT2 , Animals , Melatonin/pharmacology , Oocytes/drug effects , Oocytes/metabolism , Swine , Fertilization in Vitro/methods , Female , Receptor, Melatonin, MT2/metabolism , Receptor, Melatonin, MT2/genetics , In Vitro Oocyte Maturation Techniques/methods , Embryonic Development/drug effects , Fertilization/drug effects , Blastocyst/drug effects , Blastocyst/metabolism , Tryptamines/pharmacology
3.
Mol Ecol ; : e17521, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39206937

ABSTRACT

The diet breadth of generalist herbivores when compared to specialists tends to be associated with greater transcriptional plasticity. Here, we consider whether it may also contribute to variation in host range among two generalists with different levels of polyphagy. We examined two related polyphagous spider mites with different host ranges, Tetranychus urticae (1200 plants) and Tetranychus truncatus (90 plants). Data from multiple populations of both species domesticated on common beans and transferred to new plant hosts (cotton, cucumber, eggplant) were used to investigate transcriptional plasticity relative to population-based variation in gene expression. Compared to T. truncatus, T. urticae exhibited much higher transcriptional plasticity. Populations of this species also showed much more variable expression regulation in response to a plant host, particularly for genes related to detoxification, transport, and transcriptional factors. In response to the different plant hosts, both polyphagous species showed enriched processes of drug/xenobiotics metabolism, with T. urticae orchestrating a relatively broader array of biological pathways. Through co-expression network analysis, we identified gene modules associated with host plant response, revealing shared hub genes primarily involved in detoxification metabolism when both mites fed on the same plants. After silencing a shared hub CYP gene related to eggplant exposure, the performance of both species on the original bean host improved, but the fecundity of T. truncatus decreased when feeding on eggplant. The extensive transcriptomic variation shown by T. urticae might serve as a potential compensatory mechanism for a deficiency of hub genes in this species. This research points to nuanced differences in transcriptomic variability between generalist herbivores.

4.
Abdom Radiol (NY) ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995402

ABSTRACT

OBJECTIVES: To evaluate the efficacy of low-flow oxygen inhalation in mitigating transient severe motion (TSM) artifacts associated with gadoxetate disodium-enhanced hepatic magnetic resonance imaging (MRI). METHODS: Patients undergoing gadoxetate disodium-enhanced MRI were included. During the examination, the experimental group received oxygen at 2 L/min via nasal cannula, while the control group did not. Images and TSM scores were evaluated and compared across precontrast, arterial, venous, and hepatobiliary phases. Subgroup analyses were conducted based on the presence of pleural effusion or ascites. RESULTS: A total of 325 patients were included. The motion scores were highest in the arterial phase and lowest in the hepatobiliary phase in both groups, but were significantly lower in the experimental group (p < 0.05). The incidence of TSM was significantly lower in the experimental group (3.29%) compared to the control group (13.29%, p = 0.01). While pleural effusion was associated with reduced image quality in both groups (p < 0.05), the image quality in the pleural effusion category was higher in the experimental group than in the control group. Oxygen inhalation showed limited efficacy in mitigating TSM related to ascites. CONCLUSIONS: Low-flow oxygen inhalation can effectively reduce the occurrence of gadoxetate disodium-related TSM. Pleural effusion may impair respiratory function and contribute to TSM, which can be alleviated by oxygen supplementation. However, Oxygen inhalation is less effective under the condition of ascites.

5.
Mol Imaging ; 23: 15353508241261583, 2024.
Article in English | MEDLINE | ID: mdl-38952400

ABSTRACT

Objective: To investigate the performance of diffusion-tensor imaging (DTI) and hydrogen proton magnetic resonance spectroscopy (1H-MRS) parameters in predicting the immunohistochemistry (IHC) biomarkers of glioma. Methods: Patients with glioma confirmed by pathology from March 2015 to September 2019 were analyzed, the preoperative DTI and 1H-MRS images were collected, apparent diffusion coefficient (ADC) and fractional anisotropy (FA), in the lesion area were measured, the relative values relative ADC (rADC) and relative FA (rFA) were obtained by the ratio of them in the lesion area to the contralateral normal area. The peak of each metabolite in the lesion area of 1H-MRS image: N-acetylaspartate (NAA), choline (Cho), and creatine (Cr), and metabolite ratio: NAA/Cho, NAA/(Cho + Cr) were selected and calculated. The preoperative IHC data were collected including CD34, Ki-67, p53, S-100, syn, vimentin, NeuN, Nestin, and glial fibrillary acidic protein. Results: One predicting parameter of DTI was screened, the rADC of the Ki-67 positive group was lower than that of the negative group. Two parameters of 1H-MRS were found to have significant reference values for glioma grades, the NAA and Cr decreased as the grade of glioma increased, moreover, Ki-67 Li was negatively correlated with NAA and Cr. Conclusion: NAA and Cr have potential application value in predicting glioma grades and tumor proliferation activity. Only rADC has predictive value for Ki-67 expression among DTI parameters.


Subject(s)
Brain Neoplasms , Glioma , Immunohistochemistry , Humans , Glioma/diagnostic imaging , Glioma/pathology , Glioma/metabolism , Male , Female , Middle Aged , Adult , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging/methods , Aged , Proton Magnetic Resonance Spectroscopy/methods , Young Adult
6.
Sci Data ; 11(1): 340, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580722

ABSTRACT

Despite the rapid advances in sequencing technology, limited genomic resources are currently available for phytophagous spider mites, which include many important agricultural pests. One of these pests is Tetranychus piercei (McGregor), a serious banana pest in East Asia exhibiting remarkable tolerance to high temperature. In this study, we assembled a high-quality genome of T. piercei using a combination of PacBio long reads and Illumina short reads sequencing. With the assistance of chromatin conformation capture technology, 99.9% of the contigs were anchored into three pseudochromosomes with a total size of 86.02 Mb. Repetitive elements, accounting for 14.16% of this genome (12.20 Mb), are predominantly composed of long-terminal repeats (30.7%). By combining evidence of ab initio prediction, transcripts, and homologous proteins, we annotated 11,881 protein-coding genes. Both the genome and proteins have high BUSCO completeness scores (>94%). This high-quality genome, along with reliable annotation, provides a valuable resource for investigating the high-temperature tolerance of this species and exploring the genomic basis that underlies the host range evolution of spider mites.


Subject(s)
Tetranychidae , Animals , Chromosomes , Genome , Genomics , Molecular Sequence Annotation , Phylogeny , Repetitive Sequences, Nucleic Acid , Tetranychidae/genetics
7.
BMC Biol ; 22(1): 70, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519936

ABSTRACT

BACKGROUND: Eriophyoid mites (Eriophyoidea) are among the largest groups in the Acariformes; they are strictly phytophagous. The higher-level phylogeny of eriophyoid mites, however, remains unresolved due to the limited number of available morphological characters-some of them are homoplastic. Nevertheless, the eriophyoid mites sequenced to date showed highly variable mitochondrial (mt) gene orders, which could potentially be useful for resolving the higher-level phylogenetic relationships. RESULTS: Here, we sequenced and compared the complete mt genomes of 153 eriophyoid mite species, which showed 54 patterns of rearranged mt gene orders relative to that of the hypothetical ancestor of arthropods. The shared derived mt gene clusters support the monophyly of eriophyoid mites (Eriophyoidea) as a whole and the monophylies of six clades within Eriophyoidea. These monophyletic groups and their relationships were largely supported in the phylogenetic trees inferred from mt genome sequences as well. Our molecular dating results showed that Eriophyoidea originated in the Triassic and diversified in the Cretaceous, coinciding with the diversification of angiosperms. CONCLUSIONS: This study reveals multiple molecular synapomorphies (i.e. shared derived mt gene clusters) at different levels (i.e. family, subfamily or tribe level) from the complete mt genomes of 153 eriophyoid mite species. We demonstrated the use of derived mt gene clusters in unveiling the higher-level phylogeny of eriophyoid mites, and underlines the origin of these mites and their co-diversification with angiosperms.


Subject(s)
Genome, Mitochondrial , Magnoliopsida , Mites , Animals , Phylogeny , Mites/genetics , Genes, Mitochondrial , Multigene Family , Magnoliopsida/genetics
8.
Front Endocrinol (Lausanne) ; 15: 1338420, 2024.
Article in English | MEDLINE | ID: mdl-38384968

ABSTRACT

Background: Recently, serum sialic acid (SA) has emerged as a distinct prognostic marker for prostate cancer (PCa) and bone metastases, warranting differential treatment and prognosis for low-volume (LVD) and high-volume disease (HVD). In clinical settings, evaluating bone metastases can prove advantageous. Objectives: We aimed to establish the correlation between SA and both bone metastasis and HVD in newly diagnosed PCa patients. Methods: We conducted a retrospective analysis of 1202 patients who received a new diagnosis of PCa between November 2014 and February 2021. We compared pretreatment SA levels across multiple groups and investigated the associations between SA levels and the clinical parameters of patients. Additionally, we compared the differences between HVD and LVD. We utilized several statistical methods, including the non-parametric Mann-Whitney U test, Spearman correlation, receiver operating characteristic (ROC) curve analysis, and logistic regression. Results: The results indicate that SA may serve as a predictor of bone metastasis in patients with HVD. ROC curve analysis revealed a cut-off value of 56.15 mg/dL with an area under the curve of 0.767 (95% CI: 0.703-0.832, P < 0.001) for bone metastasis versus without bone metastasis and a cut-off value of 65.80 mg/dL with an area under the curve of 0.766 (95% CI: 0.644-0.888, P = 0.003) for HVD versus LVD. Notably, PCa patients with bone metastases exhibited significantly higher SA levels than those without bone metastases, and HVD patients had higher SA levels than LVD patients. In comparison to the non-metastatic and LVD cohorts, the cohort with HVD exhibited higher levels of alkaline phosphatase (AKP) (median, 122.00 U/L), fibrinogen (FIB) (median, 3.63 g/L), and prostate-specific antigen (PSA) (median, 215.70 ng/mL), as well as higher Gleason scores (> 7). Multivariate logistic regression analysis demonstrated that an SA level of > 56.15 mg/dL was independently associated with the presence of bone metastases in PCa patients (OR = 2.966, P = 0.018), while an SA level of > 65.80 mg/dL was independently associated with HVD (OR = 1.194, P = 0.048). Conclusion: The pretreatment serum SA level is positively correlated with the presence of bone metastases.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Male , Humans , N-Acetylneuraminic Acid , Retrospective Studies , Prostatic Neoplasms/pathology , Prostate-Specific Antigen , Bone Neoplasms/secondary
9.
Orthop Surg ; 16(2): 312-319, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086603

ABSTRACT

OBJECTIVE: Intertrochanteric fracture of the femur is a common fracture in older people. Due to the poor systemic condition and prognosis of elderly patients, it is prone to more complications. We introduce the bone-setting concept in the design of the robots, which are used for intertrochanteric fracture of the femur reduction. The purpose of this study is to compare the effect of bone-setting robots and conventional reduction in the treatment of intertrochanteric fracture of the femur (IFF). METHODS: From June 2021 to January 2023, 60 patients with IFF who were treated surgically were assigned to bone-setting robots group and conventional reduction methods group in this retrospective study. The reduction time, operation time, total time, intraoperative blood loss, incision length, fluoroscopy time, and the follow-up time were reviewed. The visual analogue scale (VAS) and Harris scores were used for functional assessment. For continuous variables, independent t-tests were applied; for categorical data, the chi-square test was applied. The significance level as p < 0.05. RESULTS: Among the 60 patients with IFF, 31 were assigned to the bone-setting robots group, and 29 were assigned to the conventional reduction methods group. Both groups with a similar baseline in the number, gender, age, and classification (p > 0.05). The reduction time, operation time, total time, intraoperative blood loss, and fluoroscopy time were less than those in the bone-setting robots reduction group compared to the conventional reduction group. In the bone-setting robots reduction group, the preoperative VAS score was 6.2 ± 1.3, the Harris score was 35.3 ± 3.1, 1 week after surgery VAS score was 3.3 ± 1.2, the Harris score was 57.3 ± 3.7, and at the last follow-up VAS score was 2.4 ± 0.8, and the Harris score was 88.7 ± 3.4. While in the conventional reduction group, the preoperative VAS score was 6.3 ± 1.3, the Harris score was 35.9 ± 2.9, 1 week after surgery VAS score was 4.8 ± 1.4, the Harris score was 46.8 ± 2.8, and at the last follow-up VAS score was 2.6 ± 0.8, and the Harris score was 87.3 ± 3.3. There were no significant differences between the two groups at the preoperative and 6-month postoperative follow-ups in VAS score and Harris score (p > 0.05, p > 0.05, respectively). But the difference was statistically significant at the one-week postoperative follow-up in VAS and Harris scores (p < 0.001). CONCLUSION: The bone-setting robots can better protect the "fracture environment" and have the advantages of being precise, minimally invasive, simple, short time, low radiation, and rapid fracture recovery. The clinical effect of closed repair of IFF is ideal.


Subject(s)
Fracture Fixation, Intramedullary , Hip Fractures , Robotics , Humans , Aged , Retrospective Studies , Treatment Outcome , Blood Loss, Surgical/prevention & control , Bone Nails , Hip Fractures/surgery
10.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38069176

ABSTRACT

Mitochondrial DNA (mtDNA) has been widely used as a valuable tool in studies related to evolution and population genetics, under the implicit assumption of neutral evolution. However, recent studies suggest that natural selection also plays a significant role in shaping mitochondrial genome evolution, although the specific driving forces remain elusive. In this study, we aimed to investigate whether and how climate influences mitochondrial genome evolution by comparing the selection pressures acting on mitochondrial genomes between two rice planthoppers, Sogatella furcifera (Horváth) and Laodelphax striatellus (Fallén), which have different climate distributions. We employed the dN/dS method, MK test and Tajima's D tests for our analysis. Our results showed that the mitochondrial genomes of the two species appear to undergo predominantly purifying selection, consistent with the nearly neutral evolution model. However, we observed varied degrees of purifying selection among the 13 protein-coding genes. Notably, ND1, ND2, ND6, COIII, and ATP8 exhibited significantly stronger purifying selection and greater divergence between the two species compared to the other genes. Additionally, we observed relatively stronger purifying selection in the mitochondrial genomes of S. furcifera compared to L. striatellus. This difference could be attributed to varying metabolic requirements arising from distinct habitats or other factors that are unclear here. Furthermore, we speculate that mito-nuclear epistatic interactions may play a role in maintaining nonsynonymous polymorphisms, particularly for COI and COII. Overall, our results shed some light on the influence of climate on mitochondrial genome evolution.


Subject(s)
Genome, Mitochondrial , Hemiptera , Animals , Hemiptera/genetics , DNA, Mitochondrial/genetics , Genetic Drift , Climate , Selection, Genetic , Phylogeny , Evolution, Molecular
11.
Foods ; 12(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37569225

ABSTRACT

Maturity is a crucial indicator in assessing the quality of tomatoes, and it is closely related to lycopene content. Using hyperspectral imaging, this study aimed to monitor tomato maturity and predict its lycopene content at different maturity stages. Standard normal variable (SNV) transformation was applied to preprocess the hyperspectral data. Then, using competitive adaptive reweighted sampling (CARS), the characteristic wavelengths were selected to simplify the calibration models. Based on the full and characteristic wavelengths, a support vector classifier (SVC) model was developed to determine tomato maturity qualitatively. The results demonstrated that the classification accuracy using the characteristic wavelength led to the obtention of better results with an accuracy of 95.83%. In addition, the support vector regression (SVR) and partial least squares regression (PLSR) models were utilized to predict lycopene content. With a coefficient of determination for prediction (R2P) of 0.9652 and a root mean square error for prediction (RMSEP) of 0.0166 mg/kg, the SVR model exhibited the best quantitative prediction capacity based on the characteristic wavelengths. Following this, a visual distribution map was created to evaluate the lycopene content in tomato fruit intuitively. The results demonstrated the viability of hyperspectral imaging for detecting tomato maturity and quantitatively predicting the lycopene content during storage.

12.
Front Endocrinol (Lausanne) ; 14: 1188944, 2023.
Article in English | MEDLINE | ID: mdl-37645415

ABSTRACT

Introduction: This study aimed to evaluate the predictive value of the serum biochemical index, including alkaline phosphatase (AKP), lactate dehydrogenase (LDH), α-L-fucosidase (AFU), serum sialic acid (SA), and fibrinogen (FIB), for prostate cancer (PCa) and clinically significant prostate cancer (CSPCa) in patients with a prostate-specific antigen (PSA) value between 4 and 20 ng/mL. Patients and methods: This study retrospectively examined the clinical data of 408 eligible patients who underwent prostate biopsies in our hospital between March 2015 and July 2022. CSPCa was defined as a "Gleason grade group of≥2". For analyzing the association between PCa/CSPCa and serum biochemical index, univariable logistic regression and multivariable logistic regression were conducted. Based on the multivariable logistic regression model, we constructed models and compared the area under the curve (AUC). We generated the nomogram, the ROC curve, the DCA curve, and the calibration curve for PCa. Results: Overall, we studied 271 patients with PCa (including 155 patients with CSPCa) and 137 non-PCa patients. Patients with PCa were more likely to consume alcohol, have higher total PSA (TPSA) values, and have lower free PSA (FPSA) and free/total PSA (f/T) values. There were higher TPSA values and lower f/T values in the CSPCa group when compared with the non-CSPCa group. The univariate logistic regression analyses did not show significant results. However, AKP, AFU, SA, TPSA, and FPSA all retain significant significance when all factors are included in multifactor logistic regression analysis. This finding suggests that the exposure factor exhibited an independent effect on the outcome after controlling for other factors, including the potential confounding effects that may have been underestimated. Through ROC curves, we found that SA and TPSA levels are more powerful predictors. In contrast, there is a lack of excellent predictive value for PCA and CSPCa using Age, AFU, FIB, and FPSA. Conclusion: In our study, serum biochemical index is a potential prediction tool for PCa and CSPCa for patients with PSA values between 4 and 20 ng/mL. Additionally, the new serum biochemical index SA is also useful when diagnosing PCa and CSPCa, as we conclude in our study.


Subject(s)
Prostate-Specific Antigen , Prostatic Neoplasms , Male , Humans , N-Acetylneuraminic Acid , Retrospective Studies , Prostatic Neoplasms/diagnosis , Alkaline Phosphatase , Fibrinogen
13.
Insect Sci ; 30(5): 1208-1228, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37279769

ABSTRACT

The phytophagous mite Tetranychus truncatus is a serious pest in East Asia but has a relatively narrower host range than the pest mite Tetranychus urticae, which can feed on over 1200 plant species. Here, we generated a high-quality chromosomal level genome of T. truncatus and compared it with that of T. urticae, with an emphasis on the genes related to detoxification and chemoreception, to explore the genomic basis underlying the evolution of host range. We also conducted population genetics analyses (in 86 females from 10 populations) and host transfer experiments (in 4 populations) to investigate transcription changes following transfer to a low-quality host (Solanum melongena, eggplant), and we established possible connections between fitness on eggplant and genes related to detoxification and chemoreception. We found that T. truncatus has fewer genes related to detoxification, transport, and chemoreception than T. urticae, with a particularly strong reduction in gustatory receptor (GR) genes. We also found widespread transcriptional variation among T. truncatus populations, which varied in fitness on eggplant. We characterized selection on detoxification-related genes through ω values and found a negative correlation between expression levels and ω values. Based on the transcription results, as well as the fitness and genetic differences among populations, we identified genes potentially involved in adaptation to eggplant in T. truncatus. Our work provides a genomic resource for this pest mite and new insights into mechanisms underlying the adaptation of herbivorous mites to host plants.

14.
Mol Ecol ; 32(15): 4278-4297, 2023 08.
Article in English | MEDLINE | ID: mdl-37211626

ABSTRACT

Pesticide resistance represents a clear and trackable case of adaptive evolution with a strong societal impact. Understanding the factors associated with the evolution and spread of resistance is imperative to develop sustainable crop management strategies. The two-spotted spider mite Tetranychus urticae, a major crop pest with worldwide distribution and a polyphagous lifestyle, has evolved resistance to most classes of pesticides. Tetranychus urticae exists as either a green- or a red-coloured morph. However, the extent of genetic divergence and reproductive compatibility vary across populations of these colour morphs, complicating their taxonomic resolution at the species level. Here, we studied patterns of genetic differentiation and barriers to gene flow within and between morphs of T. urticae in order to understand the factors that influence the spread of resistance mutations across its populations. We derived multiple iso-female lines from Tetranychus populations collected from agricultural crops. We generated genomic and morphological data, characterized their bacterial communities and performed controlled crosses. Despite morphological similarities, we found large genomic differentiation between the morphs. This pattern was reflected in the incomplete, but strong postzygotic incompatibility in crosses between colour morphs, while crosses within morphs from different geographical locations were largely compatible. In addition, our results suggest recent/on-going gene flow between green-coloured T. urticae and T. turkestani. By screening the sequences of 10 resistance genes, we found evidence for multiple independent origins and for single evolutionary origins of target-site resistance mutations. Our results indicate that target-site mutations mostly evolve independently in populations on different geographical locations, and that these mutations can spread due to incomplete barriers to gene flow within and between populations.


Subject(s)
Pesticides , Tetranychidae , Female , Animals , Color , Genome , Mutation , Genomics , Tetranychidae/genetics
15.
Anal Chem ; 95(5): 2884-2892, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36701639

ABSTRACT

The frequently mutated phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) gene is associated with multiple tumors and endocytosis of viruses. Identification of muted nucleotides at the hotspot can help in finding the susceptible people who are vulnerable to cancers and viruses. Herein, a simple enzyme-free colorimetric method is developed for the quick detection of PIK3CA gene mutations. The main mechanism lies in the dissimilar interactions between praseodymia nanorods and different nucleotides, as well as the underlying oxidase-mimicking characteristics of praseodymia. With rational designs of probes and processes, this method has great potential for expanded applications in the screening of mutations in other genes of interest.


Subject(s)
Colorimetry , Neoplasms , Humans , Catalytic Domain , Mutation , Class I Phosphatidylinositol 3-Kinases/genetics , Nucleotides
16.
Mol Phylogenet Evol ; 179: 107676, 2023 02.
Article in English | MEDLINE | ID: mdl-36535519

ABSTRACT

The superfamily Eriophyoidea includes >5000 named species of very small phytophagous mites. As for many groups of phytophagous invertebrates, factors responsible for diversification of eriophyoid mites are unclear. Here, we used an inferred phylogeny of 566 putative species of eriophyoid mites based on fragments of two mitochondrial genes and two nuclear genes to examine factors associated with their massive evolutionary diversification through time. Our dated phylogeny indicates a Carboniferous origin for gymnosperm-associated Eriophyoidea with subsequent diversification involving multiple host shifts to angiosperms-first to dicots, and then to monocots or shifts back to gymnosperms-beginning in the Cretaceous period when angiosperms diverged. Speciation rates increased more rapidly in the Eriophyidae + Diptilomiopidae (mostly infesting angiosperms) than in the Phytoptidae (mostly infesting gymnosperms). Phylogenetic signal, speciation rates, dispersal and vicariance results combined with inferred topologies show that hosts played a key role in the evolution of eriophyoid mites. Speciation constrained by hosts was probably the main driver behind eriophyoid mite diversification worldwide. We demonstrate monophyly of the Eriophyoidea, whereas all three families, most subfamilies, tribes, and most genera are not monophyletic. Our time-calibrated tree provides a framework for further evolutionary studies of eriophyoid mites and their interactions with host plants as well as taxonomic revisions above the species level.


Subject(s)
Magnoliopsida , Mites , Humans , Animals , Phylogeny , Mites/genetics , Magnoliopsida/genetics , Genes, Mitochondrial , Cell Nucleus/genetics
17.
Br J Radiol ; 95(1140): 20220196, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36341682

ABSTRACT

OBJECTIVE: To compare image quality and diagnostic accuracy of arterial stenosis in low-dose lower-extremity CT angiography (CTA) between adaptive statistical iterative reconstruction-V (ASIR-V) and deep learning image reconstruction (DLIR) algorithms. METHODS: 46 patients undergoing low-dose lower-extremity CTA were enrolled. Images were reconstructed using ASIR-V (blending factor of 50% (AV-50) and 100% (AV-100)) and DLIR (medium (DL-M), and high (DL-H)). CT values and standard deviation of the aorta, psoas, popliteal artery, popliteal and ankle muscles were measured. The edge-rise distance and edge-rise slope were calculated. The degrees of granularity and edge blurring were assessed using a 5-point scale. The stenosis degrees were measured on the four reconstructions, and their mean square errors against that of digital subtraction angiography were calculated and compared. RESULTS: For both ASIR-V and DLIR, higher reconstruction intensity generated lower noise and higher signal-to-noise ratio and contrast-to-noise ratio values. The standard deviation values in AV-100 images were significantly lower than other reconstructions. The two DLIR image groups had higher edge-rise slope and lower edge-rise distance (DL-M:1.79 ± 0.37 mm and DL-H:1.82 ± 0.38 mm vs AV-50:1.96 ± 0.39 mm and AV-100:2.01 ± 0.36 mm, p = 0.014) than ASIR-V images. The overall image quality of DLIR was rated higher than ASIR-V (DL-M:0.83 ± 0.61, DL-H:0.41 ± 0.62, AV-50:1.85 ± 0.60 and AV-100:2.37 ± 0.77, p < 0.001), with DL-H having the highest overall image quality score. For stenosis measurement, DL-H had the lowest mean-square-errors compared to digital subtraction angiography among all reconstruction groups. CONCLUSION: DLIR images had higher image quality ratings with lower image noise and sharper vessel walls in low-dose lower-extremity CTA, and DL-H provides the best overall image quality and highest accuracy in diagnosing artery stenoses. ADVANCES IN KNOWLEDGE: DLIR provides high-quality images with sharper edges compared to ASIR-V during low-dose CTA of lower extremity arteries, and DLIR (high) provides the best overall image quality and highest accuracy in diagnosing artery stenoses among all reconstruction algorithms (ASIR-V and DLIR). ASIR-V with blending factor of 100% has the strongest noise reduction ability among all reconstruction algorithms (ASIR-V and DLIR); however, it generates the most blurred images.


Subject(s)
Deep Learning , Vascular Diseases , Humans , Radiographic Image Interpretation, Computer-Assisted/methods , Radiation Dosage , Constriction, Pathologic/diagnostic imaging , Computed Tomography Angiography , Tomography, X-Ray Computed/methods , Algorithms , Image Processing, Computer-Assisted/methods , Lower Extremity/diagnostic imaging
18.
Antioxidants (Basel) ; 11(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36290750

ABSTRACT

Tannin (TA) improves porcine oocyte cytoplasmic maturation and subsequent embryonic development after in vitro fertilization (IVF). However, the mechanism through which TA blocks polyspermy after IVF remains unclear. Hence, the biological function of organelles (cortical granule [CG], Golgi apparatus, endoplasmic reticulum [ER], and mitochondria) and the incidence of polyspermic penetration were examined. We found no significant difference in oocyte nuclear maturation among the 1 µg/mL, 10 µg/mL TA, and control groups. Moreover, 100 µg/mL TA significantly reduced 1st polar body formation rate compared to the other groups. Additionally, 1 and 10 µg/mL TA significantly increased the protein levels of GDF9, BMP15, and CDK1 compared to the control and 100 µg/mL TA groups. Interestingly, 1 and 10 µg/mL TA improved the normal distribution of CGs, Golgi, ER, and mitochondria by upregulating organelle-related gene expression and downregulating ER stress (CHOP) gene expression. Simultaneously, 1 and 10 µg/mL TA significantly increased the proportion of normal fertilized oocytes (2 pronuclei; 2 PN) and blastocyst formation rate compared to the control, as well as that of 100 µg/mL TA after IVF by upregulating polyspermy-related genes. In conclusion, TA during IVM enhances 2PN and blastocyst formation rates by regulating organelles' functions and activities.

19.
Heliyon ; 8(9): e10591, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36120497

ABSTRACT

Diagnostic testing is essential for management of the COVID-19 pandemic. An agile assay design methodology, optimized for the cobas® 6800/8800 system, was used to develop a dual-target, qualitative SARS-CoV-2 RT-PCR test using commercially available reagents and existing sample processing and thermocycling profiles. The limit of detection was 30-52 copies/mL for USA-WA1/2020. Assay sensitivity was confirmed for SARS-CoV-2 variants Alpha, Beta, Gamma, Delta and Kappa. The coefficients of variation of the cycle threshold number (Ct) were between 1.1 and 2.2%. There was no difference in Ct using nasopharyngeal compared to oropharyngeal swabs in universal transport medium (UTM). A small increase in Ct was observed with specimens collected in cobas PCR medium compared to UTM. In silico analysis indicated that the dual-target test is capable of detecting all >1,800,000 SARS-CoV-2 sequences in the GISAID database. Our agile assay design approach facilitated rapid development and deployment of this SARS-CoV-2 RT-PCR test.

20.
Antioxidants (Basel) ; 11(9)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36139716

ABSTRACT

This study aimed to determine the underlying mechanism of ramelteon on the competence of oocyte and subsequent embryo development in pigs during in vitro maturation (IVM). Our results showed that the cumulus expansion index was significantly lower in the control group compared to the ramelteon groups (p < 0.05). Moreover, supplementation of 10−11 and 10−9 M ramelteon significantly increased the cumulus expansion and development-related genes expression, and reduced apoptosis in cumulus cells (p < 0.05). In oocytes, the nuclear maturation rate was significantly improved in 10−11, 10−9, and 10−7 M ramelteon groups compared to the control (p < 0.05). Additionally, the level of intracellular GSH was significantly increased and ROS was significantly decreased in ramelteon-supplemented groups, and the gene expression of oocyte development and apoptosis were significantly up- and down-regulated by 10−11 and 10−9 M ramelteon (p < 0.05), respectively. The immunofluorescence results showed that the protein levels of GDF9, BMP15, SOD1, CDK1, and PGC1α were significantly increased by 10−11 M ramelteon compared to the control (p < 0.05). Although there was no significant difference in cleavage rate, the blastocyst formation rate, total cell numbers, and hatching/-ed rate were significantly improved in 10−11 M ramelteon group compared to the control (p < 0.05). Furthermore, embryo development, hatching, and mitochondrial biogenesis-related genes were dramatically up-regulated by 10−11 M ramelteon (p < 0.05). In addition, the activities of lipogenesis and lipolysis in oocytes were dramatically increased by 10−11 M ramelteon compared to the control (p < 0.05). In conclusion, supplementation of 10−11 M ramelteon during IVM improved the oocyte maturation and subsequent embryo development by reducing oxidative stress and maintenance of lipid homeostasis.

SELECTION OF CITATIONS
SEARCH DETAIL