Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.182
Filter
1.
Article in English | MEDLINE | ID: mdl-38954243

ABSTRACT

Oral microorganisms are closely related to oral health, the occurrence of some oral diseases is associated with changes in the oral microbiota, and many studies have demonstrated that traditional smoking can affect the oral microbial community. However, due to the short time since the emergence of e-cigarettes, fewer studies are comparing oral microorganisms for users of e-cigarettes versus cigarettes. We collected saliva from 40 non-smokers (NS), 46 traditional cigarette smokers (TS), and 27 e-cigarette consumers (EC), aged between 18 and 35 years. We performed 16S rRNA gene sequencing on the saliva samples collected to study the effects of e-cigarettes versus traditional cigarettes on the oral microbiome. The results showed that compared with the NS group, the alpha diversity of oral flora in saliva was altered in the TS group, with no significant change in the e-cigarette group. Compared with the NS and EC groups, the relative abundance of Actinomyces and Prevotella was increased in the TS group. However, compared with the NS and TS groups, the relative abundance of Veillonella was increased, and the relative abundance of Porphyromonas and Peptostreptococcus was decreased in the EC group. These results showed that both e-cigarettes and traditional cigarettes could alter the structure and composition of oral microbiota. The use of traditional cigarettes promotes the growth of some anaerobic bacteria, which may contribute to dental decay and bad breath over time. E-cigarettes have a different effect on the structure and composition of the oral microbial community compared to conventional cigarettes. In order to better understand the effects of e-cigarettes and traditional cigarettes on users' mouths, future studies will investigate the relationship between diseases such as dental caries and periodontitis and changes in oral microbial species levels.

2.
Cell ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38964329

ABSTRACT

The entry of coronaviruses is initiated by spike recognition of host cellular receptors, involving proteinaceous and/or glycan receptors. Recently, TMPRSS2 was identified as the proteinaceous receptor for HCoV-HKU1 alongside sialoglycan as a glycan receptor. However, the underlying mechanisms for viral entry remain unknown. Here, we investigated the HCoV-HKU1C spike in the inactive, glycan-activated, and functionally anchored states, revealing that sialoglycan binding induces a conformational change of the NTD and promotes the neighboring RBD of the spike to open for TMPRSS2 recognition, exhibiting a synergistic mechanism for the entry of HCoV-HKU1. The RBD of HCoV-HKU1 features an insertion subdomain that recognizes TMPRSS2 through three previously undiscovered interfaces. Furthermore, structural investigation of HCoV-HKU1A in combination with mutagenesis and binding assays confirms a conserved receptor recognition pattern adopted by HCoV-HKU1. These studies advance our understanding of the complex viral-host interactions during entry, laying the groundwork for developing new therapeutics against coronavirus-associated diseases.

3.
Int J Biol Macromol ; 275(Pt 1): 133484, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960224

ABSTRACT

Spinal cord injury (SCI) represents a catastrophic neurological condition resulting in long-term loss of motor, autonomic, and sensory functions. Recently, ferroptosis, an iron-regulated form of cell death distinct from apoptosis, has emerged as a potential therapeutic target for SCI. In this study, we developed an injectable hydrogel composed of carboxymethyl cellulose (CMC), and quaternized chitosan (QCS), loaded with modified polydopamine nanoparticles (PDA NPs), referred to as CQP hydrogel. This hydrogel effectively scavenged reactive oxygen species (ROS), prevented the accumulation of Fe2+ and lipid peroxidation associated with ferroptosis, and restored mitochondrial functions in primary neuronal cells. When administered to animal models (rats) with SCI, the CQP hydrogels improved motor function by regulating iron homeostasis, inhibiting ferroptosis, and mitigating oxidative stress injury. Both in vitro and in vivo studies corroborated the capacity of CQP hydrogels to promote the shift from M1 to M2 polarization of microglia/macrophages. These findings suggest that CQP hydrogels, functioning as a localized iron-chelating system, have potential as biomaterials to enhance recovery from SCI by targeting ferroptosis and modulating anti-inflammatory macrophages activity.

4.
J Thorac Dis ; 16(6): 3764-3781, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983163

ABSTRACT

Background: Lung cancer is the most common primary malignant tumor of the lung, and as one of the malignant tumors that pose the greatest threat to the health of the population, the incidence rate has remained high in recent years. Previous studies have shown that KLRB1 is transcriptionally repressed in lung adenocarcinoma and correlates with lung adenocarcinoma prognosis. The objective of this study is to investigate the intrinsic mechanisms by which KLRB1 affects the malignant phenotypes of lung adenocarcinoma such as immune infiltration, proliferation, growth and metastasis. Methods: We assessed the expression levels of KLRB1 in publicly available databases and investigated its associations with clinical and pathological variables. Enrichment analysis was subsequently conducted to investigate possible signaling pathways and their associated biological functions. Statistical analysis, including Spearman correlation and the application of multigene prediction models, was utilized to assess the relationship between the expression of KLRB1 and the infiltration of immune cells. The diagnostic and prognostic value of KLRB1 was evaluated using Kaplan-Meier survival curves, diagnostic receptor operating characteristic (ROC) curves, histogram models, and Cox regression analysis. Specimens from lung adenocarcinoma (LUAD) patients were collected, the expression level of KLRB1 was detected by protein blotting analysis, and the expression level of KLRB1 was detected at the mRNA level by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Small interfering RNA (siRNA) was used to silence gene expression, and Transwell, Cell Counting Kit-8 (CCK-8) and colony formation assays were subsequently performed to analyze the effects of KLRB1 on LUAD cell migration, invasion and proliferation. Results: KLRB1 expression was lower in lung cancer tissue than in surrounding healthy tissue. Genes differentially expressed in the low and high KLRB1 expression groups were found to be significantly enriched in pathways related to immunity. KLRB1 exerted an impact on the MAPK/ERK signaling pathway, thereby modulating the growth and proliferation of LUAD cells. KLRB1 expression is linked to prognosis, immune infiltration, and cell migration and proliferation in LUAD. Conclusions: The evidence revealed a correlation between KLRB1 and both prognosis and immune infiltration in LUAD patients.

5.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38963030

ABSTRACT

DNA methylation is one of the earliest and most significant epigenetic mechanisms discovered. DNA methylation refers, in general, to the addition of a methyl group to a specific base in the DNA sequence under the catalysis of DNA methyltransferase, with S­adenosine methionine as the methyl donor, via covalent bonding and chemical modifications. DNA methylation is an important factor in inducing cancer. There are different types of DNA methylation, and methylation at different sites plays different roles. It is well known that the progression of colorectal cancer (CRC) is affected by the methylation of key genes. The present review did not only discuss the potential relationship between DNA methylation and CRC but also discussed how DNA methylation affects the development of CRC by affecting key genes. Furthermore, the clinical significance of DNA methylation in CRC was highlighted, including that of the therapeutic targets and biomarkers of methylation; and the importance of DNA methylation inhibitors was discussed as a novel strategy for treatment of CRC. The present review did not only focus upon the latest research findings, but earlier reviews were also cited as references to older literature.


Subject(s)
Colorectal Neoplasms , DNA Methylation , Epigenesis, Genetic , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Animals
6.
Mol Metab ; : 101997, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032642

ABSTRACT

OBJECTIVE: Currently, little is known about the mechanism(s) regulating global and specific protein translation during metabolic dysfunction-associated steatohepatitis (MASH; previously known as non-alcoholic steatohepatitis, NASH). METHODS: Unbiased label-free quantitative proteome, puromycin-labelling and polysome profiling were used to understand protein translation activity in vitro and in vivo. RESULTS: We observed a global decrease in protein translation during lipotoxicity in human primary hepatocytes, mouse hepatic AML12 cells, and livers from a dietary mouse model of MASH. Interestingly, proteomic analysis showed that Rplp1, which regulates ribosome and translation pathways, was one of the most downregulated proteins. Moreover, decreased Esrra expression and binding to the Rplp1 promoter, diminished Rplp1 gene expression during lipotoxicity. This, in turn, reduced global protein translation and Esrra/Rplp1-dependent translation of lysosome (Lamp2, Ctsd) and autophagy (sqstm1, Map1lc3b) proteins. Of note, Esrra did not increase its binding to these gene promoters or their gene transcription, confirming its regulation of their translation during lipotoxicity. Notably, hepatic Esrra-Rplp1-dependent translation of lysosomal and autophagy proteins also was impaired in MASH patients and liver-specific Esrra knockout mice. Remarkably, alternate day fasting induced Esrra-Rplp1-dependent expression of lysosomal proteins, restored autophagy, and reduced lipotoxicity, inflammation, and fibrosis in hepatic cell culture and in vivo models of MASH. CONCLUSIONS: Esrra regulation of Rplp1-mediated translation of lysosome / autolysosome proteins was downregulated during MASH. Alternate day fasting activated this novel pathway and improved MASH, suggesting that Esrra and Rplp1 may serve as therapeutic targets for MASH. Our findings also provided the first example of a nuclear hormone receptor, Esrra, to not only regulate transcription but also protein translation, via induction of Rplp1.

7.
Int Immunopharmacol ; 139: 112602, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033660

ABSTRACT

Chronic pain has emerged as a significant public health issue, seriously affecting patients' quality of life and psychological well-being, with a lack of effective pharmacological treatments. Numerous studies have indicated that macrophages play a crucial role in inflammatory pain, and targeting neuro-immune interactions for drug development may represent a promising direction for pain management. Chilobrachys jingzhao (C. jingzhao) is used as a folk medicine of the Li nationality with the efficacy of eliminating swelling, detoxicating, and relieving pain, and the related products are widely used in the market. However, the chemical constituents of C. jingzhao have not been reported, and the pharmacodynamic substance and the precise functional mechanism are unrevealed. Here we isolated a cyclic dipeptide, cyclo(L-Pro-L-Trp) (CPT) from C. jingzhao for the first time. CPT remarkably alleviated formalin-induced inflammatory pain and significantly inhibited inflammatory responses. In vivo, CPT attenuated neutrophil infiltration and plantar tissue edema and suppressed the mRNA expression of pro-inflammatory molecules. In vitro, CPT suppressed inflammation triggered by lipopolysaccharide (LPS) in both RAW 264.7 and iBMDM cells, reducing expressions of inducible nitric oxide synthase (iNOS), superoxide, and pro-inflammatory molecules. A mechanistic study revealed that CPT exerted an anti-inflammatory activity by blocking the mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, as well as alleviating the ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6). Our results elucidated the pharmacodynamic material basis of C. jingzhao, and CPT can be a promising lead for alleviating inflammation and inflammatory pain.

8.
Toxicol In Vitro ; : 105901, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029599

ABSTRACT

Hydroquinone (HQ) is one of benzene metabolites that can cause oxidative stress damage and Homologous recombination repair (HR). A good deal of reactive oxygen species (ROS) generated by oxidative stress can trigger apoptotic signaling pathways. The nuclear factor erythroid 2-related factor 2 (Nrf2) can regulate the cell response to oxidative stress damage. The aim of this study was to explore whether Nrf2 participate in HQ-induced apoptosis and its mechanism. The findings displayed that HQ triggered HR, promoted Nrf2 transfer into the cell nucleus and induced cell apoptosis, while Nrf2 deficient elevated cell apoptosis, attenuated the expression of PARP1 and RAD51. We also observed that Nrf2 deficient triggered Caspase-9. Thus, we speculated that Nrf2 might participate in HQ-induced cell apoptosis through Caspase-9 dependent pathways. Meanwhile, Nrf2 participated in HQ-induced DNA damage repair by regulating the level of PARP1 and RAD51.

9.
Acta Pharmacol Sin ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030309

ABSTRACT

Recombinant human type 5 adenovirus (H101) is an oncolytic virus used to treat nasopharyngeal carcinoma. Owing to the deletion of the E1B-55kD and E3 regions, H101 is believed to selectively inhibit nasopharyngeal carcinoma. Whether H101 inhibits other type of tumors via different mechanisms remains unclear. In this study we investigated the effects of H101 on melanomas. We established B16F10 melanoma xenograft mouse model, and treated the mice with H101 (1 × 108 TCID50) via intratumoral injection for five consecutive days. We found that H101 treatment significantly inhibited B16F10 melanoma growth in the mice. H101 treatment significantly increased the infiltration of CD8+ T cells and reduced the proportion of M2-type macrophages. We demonstrated that H101 exhibited low cytotoxicity against B16F10 cells, but the endothelial cells were more sensitive to H101 treatment. H101 induced endothelial cell pyroptosis in a caspase-1/GSDMD-dependent manner. Furthermore, we showed that the combination of H101 with the immune checkpoint inhibitor PD-L1 antibody (10 mg/kg, i.p., every three days for three times) exerted synergic suppression on B16F10 tumor growth in the mice. This study demonstrates that, in addition to oncolysis, H101 inhibits melanoma growth by promoting anti-tumor immunity and inducing pyroptosis of vascular endothelial cells.

10.
Front Cell Dev Biol ; 12: 1382244, 2024.
Article in English | MEDLINE | ID: mdl-38979035

ABSTRACT

COVID-19 patients often suffer from post-COVID-19 acute sequelae (PASC). Pulmonary fibrosis has the most significant long-term impact on the respiratory health of patients, known as post-COVID-19 pulmonary fibrosis (PC19-PF). PC19-PF can be caused by acute respiratory distress syndrome (ARDS) or COVID-19-induced pneumonia. Individuals who experience COVID-19 pneumonia symptoms (including cough, shortness of breath, dyspnea on exertion, and desaturation) for at least 12 weeks after diagnosis, almost all develop PC19-PF. Extracellular matrix molecules: laminin (LN), type IV collagen (IV Col), procollagen III N-terminal peptide (PIIINP), and hyaluronic acid (HA) are involved in the development and progression of PC19-PF. This study aimed to investigate the relationship between the progression of PC19-PF and serum levels of laminin, IV COL, PIIINP, and hyaluronic acid. This retrospective study included 162 PC19-PF patients treated and 160 healthy controls who received treatment at Shenzhen Longgang District Third People's Hospital, Hebei PetroChina Central Hospital and Changzhi People's Hospital from January 2021 to December 2023. Serum levels of LN, IV COL, PIIINP, and HA were detected by chemiluminescence immunoassay using commercial kits. Predicted forced vital capacity percentage (FVC% pred), predicted carbon monoxide lung diffusion capacity percentage (DLCO% pred), high-resolution computed tomography (HRCT) scores were assessed, and patient mortality was compared with healthy controls. Serum levels of LN, IV Col, PIIINP, and HA were significantly higher in PC19-PF or CTD-ILD patients than in healthy controls (all p < 0.05), and they were further elevated in acute exacerbation cases (all p < 0.01). In patients, HA was positively associated with HRCT scores and negatively associated with FVC% pred and DLCO% pred (all p < 0.05). Serum levels of LN, IV COL, PIIINP, and HA were significantly lower in surviving patients than in those who deceased (all p > 0.05). Serum levels of LN, IV C, PIIINP, and HA may affect the progression of PC19-PF and may serve as indicators of PC19-PF severity.

11.
J Chem Phys ; 161(2)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-38984964

ABSTRACT

Fermi's golden rule (FGR) offers an empirical framework for understanding the dynamics of spin-lattice relaxation in magnetic molecules, encompassing mechanisms like direct (one-phonon) and Raman (two-phonon) processes. These principles effectively model experimental longitudinal relaxation rates, denoted as T1-1. However, under scenarios of increased coupling strength and nonlinear spin-lattice interactions, FGR's applicability may diminish. This paper numerically evaluates the exact spin-lattice relaxation rate kernels, employing the extended dissipaton equation of motion formalism. Our calculations reveal that when quadratic spin-lattice coupling is considered, the rate kernels exhibit a free induction decay-like feature, and the damping rates depend on the interaction strength. We observe that the temperature dependence predicted by FGR significantly deviates from the exact results since FGR ignores the higher order effects and the non-Markovian nature of spin-lattice relaxation. Our methods can be easily extended to study other systems with nonlinear spin-lattice interactions and provide valuable insights into the temperature dependence of T1 in molecular qubits when the coupling is strong.

12.
Article in English | MEDLINE | ID: mdl-39016442

ABSTRACT

Molecular qubits are a promising platform for quantum information systems. Although single molecule and ensemble studies have assessed the performance of S = 1/2 molecules, it is understood that to function in devices, regular arrays of addressable qubits supported by a substrate are needed. The substrate imposes mechanical and electronic boundary conditions on the molecule; however, the impact of these effects on spin-lattice relaxation times is not well understood. Here we perform electronic structure calculations to assess the effects of a graphene (Cgr) substrate on the molecular qubit copper phthalocyanine (CuPc). We use a progressive Hessian approach to efficiently calculate and separate the substrate contributions. We also use a simple thermal model to predict the impact of these changes on the spin-phonon coupling from 0 to 200 K. Further analysis of the individual vibrational modes with and without Cgr shows that an overall increase in SPC between the vibrations modes of CuPc with the surface reduces the spin-lattice relaxation time T1. We explain these changes by examining how the substrate lifts symmetries of CuPc in the absorbed configuration. Our work shows that a surface can have a large unintentional impact on SPC and that ways to reduce this coupling need to be found to fully exploit arrays of molecular qubits in device architectures.

13.
Chem Sci ; 15(28): 10867-10881, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39027280

ABSTRACT

The photochemistry of two representative thermally activated delayed fluorescence (TADF) emitters based on the multiple resonance effect (MRE) (DABNA-1 and DtBuCzB) was studied. No significant TADF was observed in fluid solution, although the compounds have a long-lived triplet state (ca. 30 µs). We found that these planar boron molecules bind with Lewis bases, e.g., 4-dimethylaminopyridine (DMAP) or an N-heterocyclic carbene (NHC). A new blue-shifted absorption band centered at 368 nm was observed for DtBuCzB upon formation of the adduct; however, the fluorescence of the adduct is the same as that of the free DtBuCzB. We propose that photo-dissociation occurs for the DtBuCzB-DMAP adduct, which is confirmed by femtosecond transient absorption spectra, implying that fluorescence originates from DtBuCzB produced by photo-dissociation; the subsequent in situ re-binding was observed with nanosecdon transient absorption spectroscopy. No photo-dissociation was observed for the NHC adduct. Time-resolved electron paramagnetic resonance (TREPR) spectra show that the triplet states of DABNA-1 and DtBuCzB have similar zero field splitting (ZFS) parameters (D = 1450 MHz). Theoretical studies show that the slow ISC is due to small SOC and weak Herzberg-Teller coupling, although the S1/T1 energy gap is small (0.14 eV), which rationalizes the lack of TADF.

14.
Cancer Discov ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958646

ABSTRACT

Pancreatic cancer is characterized by an extensive fibroinflammatory microenvironment. During carcinogenesis, normal stromal cells are converted to cytokine-high cancer associated fibroblasts (CAFs). The mechanisms underlying this conversion, including regulation and function of fibroblast-derived cytokines, are poorly understood. Thus, efforts to target CAFs therapeutically have so far failed. Here, we show that signals from epithelial cells expressing oncogenic KRAS -a hallmark pancreatic cancer mutation- activate fibroblast autocrine signaling, which drives expression of the cytokine interleukin-33 (IL-33). Stromal IL-33 expression remains high and dependent on epithelial KRAS throughout carcinogenesis; in turn, environmental stress induces IL-33 secretion. Using compartment-specific IL-33 knockout mice, we observed that lack of stromal IL-33 leads to profound reprogramming of multiple components of the pancreatic tumor microenvironment, including CAFs, myeloid cells and lymphocytes. Notably, loss of stromal IL-33 leads to an increase in CD8+ T cell infiltration and activation, and, ultimately, reduced tumor growth.

15.
J Bone Miner Res ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843381

ABSTRACT

Although the negative association of tobacco smoking with osteoporosis is well-documented, little is known regarding the shared genetic basis underlying these conditions. In this study, we aim to investigate a shared genetic architecture between smoking and heel estimated bone mineral density (eBMD), a reliable proxy for osteoporosis. We conducted a comprehensive genome-wide cross-trait analysis to identify genetic correlation, pleiotropic loci and causal relationship of smoking with eBMD, leveraging summary statistics of the hitherto largest genome-wide association studies conducted in European ancestry for smoking initiation (Nsmoker = 1 175 108, Nnonsmoker = 1 493 921), heaviness (cigarettes per day, N = 618 489), cessation (Ncurrent smoker = 304 244, Nformer smoker = 843 028), and eBMD (N = 426 824). A significant negative global genetic correlation was found for smoking cessation and eBMD (${r}_g$ = -0.051, P = 0.01), while we failed to identify a significant global genetic correlation of smoking initiation or heaviness with eBMD. Partitioning the whole genome into independent blocks, we observed six significant shared local signals for smoking and eBMD, with 22q13.1 showing the strongest regional genetic correlation. Such a genetic overlap was further supported by 71 pleiotropic loci identified in the cross-trait meta-analysis. Mendelian randomization identified no causal effect of smoking initiation (beta = -0.003 g/cm2, 95%CI = -0.033-0.027) or heaviness (beta = -0.017 g/cm2, 95%CI = -0.072-0.038) on eBMD, but a putative causal effect of genetic predisposition to being a current smoker was associated with a lower eBMD compared to former smokers (beta = -0.100 g/cm2, 95%CI = -0.181- - 0.018). Our study demonstrates a pronounced biological pleiotropy as well as a putative causal link between current smoking status and eBMD, providing novel insights into the primary prevention and modifiable intervention of osteoporosis by advocating individuals to avoid, reduce or quit smoking as early as possible.


We conducted a comprehensive genome-wide cross-trait analysis to investigate the shared genetic basis and causal relationship underlying smoking and osteoporosis. Our findings revealed that smoking and eBMD are inherently linked through biological pleiotropy. Importantly, our study discovered that quitting smoking significantly reduced the risk of lower eBMD. We recommend individuals to avoid, reduce, or quit smoking as early as possible to protect bone health.

16.
Article in English | MEDLINE | ID: mdl-38855856

ABSTRACT

Thyroid hormones (THs) play important roles in growth, development, morphogenesis, reproduction, and so on. They are mainly meditated by binding to thyroid hormone receptors (TRs) in vertebrates. As important members of the nuclear receptor superfamily, TRs and their ligands are involved in many biological processes. To investigate the potential roles of TRs in the gonadal differentiation and sex change, we cloned and characterized the TRs genes in protogynous rice field eel (Monopterus albus). In this study, three types of TRs were obtained, which were TRαA, TRαB and TRß, encoding preproproteins of 336-, 409- and 415-amino acids, respectively. Multiple alignments of the three putative TRs protein sequences showed they had a higher similarity. Tissue expression analysis showed that TRαA mainly expressed in the gonad, while TRαB and TRß in the brain. During female-to-male sex reversal, the expression levels of all the three TRs showed a similar trend of increase followed by a decrease in the gonad. Intraperitoneal injection of triiodothyronine (T3) stimulated the expression of TRαA and TRαB, while it had no significant change on the expression of TRß in the ovary. Gonadotropin-releasing hormone analogue (GnRHa) injection also significantly upregulated the expression levels of TRαA and TRαB after 6 h, while it had no significant effect on TRß. These results demonstrated that TRs were involved in the gonadal differentiation and sex reversal, and TRα may play more important roles than TRß in reproduction by the regulation of GnRHa in rice field eel.

17.
PLoS One ; 19(6): e0304333, 2024.
Article in English | MEDLINE | ID: mdl-38875253

ABSTRACT

Magnetic MnFe2O4 nanoparticles were successfully prepared by the rapid combustion method at 500 °C for 2 h with 30 mL absolute ethanol, and were characterized by SEM, TEM, XRD, VSM, and XPS techniques, their average particle size and the saturation magnetization were about 25.3 nm and 79.53 A·m2/kg, respectively. The magnetic MnFe2O4 nanoparticles were employed in a fixed bed experimental system to investigate the adsorption capacity of Hg0 from air. The MnFe2O4 nanoparticles exhibited the large adsorption performance on Hg0 with the adsorption capacity of 16.27 µg/g at the adsorption temperature of 50 °C with the space velocity of 4.8×104 h-1. The VSM and EDS results illustrated that the prepared MnFe2O4 nanoparticles were stable before and after adsorption and successfully adsorbed Hg0. The TG curves demonstrated that the mercury compound formed after adsorption was HgO, and both physical and chemical adsorption processes were observed. Magnetic MnFe2O4 nanoparticles revealed excellent adsorbance of Hg0 in air, which suggested that MnFe2O4 nanoparticles be promising for the removal of Hg0.


Subject(s)
Ferric Compounds , Gases , Manganese Compounds , Mercury , Adsorption , Mercury/chemistry , Manganese Compounds/chemistry , Ferric Compounds/chemistry , Gases/chemistry , Particle Size , Temperature
18.
Int Microbiol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913231

ABSTRACT

Human body odor is a result of the bacterial biotransformation of odorless precursor molecules secreted by the underarm sweat glands. In the human axilla, Staphylococcus hominis is the predominant bacterial species responsible for the biotransformation process of the odorless precursor molecule into the malodorous 3M3SH by two enzymes, a dipeptidase and a specific C-S lyase. The current solutions for malodor, such as deodorants and antiperspirants are known to block the apocrine glands or disrupt the skin microbiota. Additionally, these chemicals endanger both the environment and human health, and their long-term use can influence the function of sweat glands. Therefore, there is a need for the development of alternative, environmentally friendly, and natural solutions for the prevention of human body malodor. In this study, a library of secondary metabolites from various plants was screened to inhibit the C-S lyase, which metabolizes the odorless precursor sweat molecules, through molecular docking and molecular dynamics (MD) simulation. In silico studies revealed that tannic acid had the strongest affinity towards C-S lyase and was stably maintained in the binding pocket of the enzyme during 100-ns MD simulation. We found in the in vitro biotransformation assays that 1 mM tannic acid not only exhibited a significant reduction in malodor formation but also had quite low growth inhibition in S. hominis, indicating the minimum inhibitory effect of tannic acid on the skin microflora. This study paved the way for the development of a promising natural C-S lyase inhibitor to eliminate human body odor and can be used as a natural deodorizing molecule after further in vivo analysis.

19.
Phytomedicine ; 131: 155784, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878325

ABSTRACT

BACKGROUND: Currently, SARS-CoV-2 has not disappeared and continues to prevail worldwide, with the ongoing risk of mutations and the potential for severe COVID-19. The impairment of monocyte mitochondrial function caused by SARS-CoV-2, leading to a metabolic and immune dysregulation, is a crucial factor in the development of severe COVID-19. PURPOSE: Discover effective phytomedicines based on mitochondrial-related biomarkers in severe SARS-CoV-2 infection. METHODS: Firstly, differential gene analysis and gene set enrichment analysis (GSEA) were conducted on monocytes datasets to identify genes and pathways distinguishing severe patients from uninfected individuals. Then, GO and KEGG enrichment analysis on the differentially expressed genes (DEGs) obtained. Take the DEGs and intersect them with the MitoCarta 3.0 gene set to obtain the differentially expressed mitochondrial-related genes (DE-MRGs). Subsequently, machine learning algorithms were employed to screen potential mitochondrial dysfunction biomarkers for severe COVID-19 based on score values. ROC curves were then plotted to assess the distinguish capability of the biomarkers, followed by validation using two additional independent datasets. Next, the effects of the identified biomarkers on metabolic pathways and immune cells were explored through Gene Set Variation Analysis (GSVA) and CIBERSORT. Finally, potential nature products for severe COVID-19 were screened from the expression profile dataset based on dysregulated mitochondrial-related genes, followed by in vitro experimental validation. RESULTS: There are 1812 DEGs and 17 dysregulated mitochondrial processes between severe COVID-19 patients and uninfected individuals. A total of 77 DE-MRGs were identified, and the potential biomarkers were identified as RECQL4, PYCR1, PIF1, POLQ, and GLDC. In both the training and validation sets, the area under the ROC curve (AUC) for these five biomarkers was greater than 0.9. And they did not show significant changes in mild to moderate patients (p > 0.05), indicating their ability to effectively distinguish severe COVID-19. These biomarkers exhibit a highly significant correlation with the dysregulated metabolic processes (p < 0.05) and immune cell imbalance (p < 0.05) in severe patients, as demonstrated by GSVA and CIBERSORT algorithms. Curcumin has the highest score in the predictive model based on transcriptomic data from 496 natural compounds (p = 0.02; ES = 0.90). Pre-treatment with curcumin for 8 h has been shown to alleviate mitochondrial membrane potential damage caused by the SARS-CoV-2 S1 protein (p < 0.05) and reduce elevated levels of reactive oxygen species (ROS) (p < 0.01). CONCLUSION: The results of this study indicate a significant correlation between severe SARS-CoV-2 infection and mitochondrial dysfunction. The proposed mitochondrial dysfunction biomarkers identified in this study are associated with the disease progression, metabolic and immune changes in severe SARS-CoV-2 infected patients. Curcumin has a potential role in preventing severe COVID-19 by protecting mitochondrial function. Our findings provide new strategies for predicting the prognosis and enabling early intervention in SARS-CoV-2 infection.


Subject(s)
Biomarkers , COVID-19 Drug Treatment , COVID-19 , Mitochondria , Humans , Biomarkers/blood , Mitochondria/drug effects , SARS-CoV-2 , Phytotherapy , Machine Learning , Monocytes/drug effects , Monocytes/metabolism , Computational Biology , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL