Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.724
1.
Curr Eye Res ; : 1-7, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717137

PURPOSE: The study aimed to investigate the factors associated with anterior location of Marx's line in ocular surface and living habits, especially in tear film. MATERIALS AND METHODS: This cross-sectional study enlisted 483 participants with meibomian gland dysfunction, who were divided into two groups: 160 participants with mild anterior location of Marx's line and 323 participants with moderate-to-severe anterior location. Participants completed a survey of demographic characteristics (sex, age, length of visual terminal use, sleep duration, skin property), and the Ocular Surface Disease Index and Standard Patient Evaluation of Eye Dryness questionnaires. They also underwent slit-lamp examinations of the lids, and measurements of non-invasive tear break up time, tear meniscus height, fluorescein tear break up time, lipid layer thickness, partial blink rate, lid wiper epitheliopathy, and meibomian gland dropout. RESULTS: The tear meniscus height (mild:0.21(0.18-0.25), moderate-to-severe:0.19(0.16-0.23), p = 0.004), fluorescein tear break up time(mild:3(2-4),moderate to severe:2(1-3), p = 0.000), max LLT(mild:87(62-100), moderate-to-severe:99(69-100), p = 0.04), average LLT(mild:64.5(47.5-96.75), moderate-to-severe:74(53-100), p = 0.012), min LLT(mild:52(38-75), moderate-to-severe:59(41-85), p = 0.029) differed significantly between mild and moderate-to-severe anterior location of Marx's line, and associated to the anterior location of Marx's line(r=-0.134, p = 0.03; r=-0.194, p = 0.000; r = 0.093, p = 0.041; r = 0.119, p = 0.009; r = 0.105, p = 0.022) However, no statistical significance was observed in the OSDI, SPEED, partial blink rate, non-invasive tear breakup time, lipid layer thickness, meibomian gland dropout and lid wiper epitheliopathy(p > 0.05). Meanwhile, in the demographic characteristics, statistically significant correlations were associated with skin property(r = 0.154, p = 0.001) and sleep duration(r=-0.124, p = 0.006), but not with age, sex, and the length of visual terminal use (p > 0.05). CONCLUSIONS: Lower TMH and shorter TBUT positively correlated with anterior location of the Marx's line, and were risk factors. Meanwhile, participants with oily skin and shorter sleep duration were more likely to exhibit anterior location of Marx's line.

2.
Clin Nutr ESPEN ; 61: 203-211, 2024 Jun.
Article En | MEDLINE | ID: mdl-38777434

BACKGROUND: Taurine is considered an immunomodulatory agent. From current reports on clinical studies, we conducted a systematic review and meta-analysis to investigate the effects of taurine-enhanced enteral nutrition (EN) on the outcomes of critically ill patients to resolve conflicting evidence in literature. METHODS: Literature from PubMed, EMBASE, Web of Science, Cochrane Library, CNKI, SINOMED, and WanFang databases were retrieved, and randomized controlled trials (RCTs) were identified. The time range spanned from January 1, 2000, to January 31, 2024. The Cochrane Collaboration Tool was used to evaluate the risk of bias. We used the GRADE approach to rate the quality of evidence and the I2 test to assess the statistical heterogeneity of the results. Risk ratio (RR), mean difference (MD), and 95% confidence interval (95% CI) were used to analyze measurement data. RESULTS: Four trials involving 236 patients were finally included. The meta-analysis results indicated that taurine-enhanced EN did not reduce mortality (RR = 0.70, p = 0.45, 95% CI [0.28, 1.80], two trials, 176 participants, low quality). There was also no significant difference in length of stay in the intensive care unit (ICU) between the taurine-enhanced EN and control groups. Taurine-enhanced EN may reduce pro-inflammatory factor interleukin-6 (IL-6) levels in critically ill patients(the result about IL-6 cannot be pooled). However, taurine-enhanced EN had no significant impact on high-sensitivity-C-reactive protein levels (MD = -0.41, p = 0.40, 95% CI [-1.35, 0.54], two trials, 60 participants, low quality). DISCUSSION: Taurine-enhanced EN may reduce IL-6 levels and is not associated with improved clinical outcomes in critically ill patients, which may have potential immunoregulatory effects in critically ill patients. Given that published studies have small samples, the above conclusions need to be verified by more rigorously designed large-sample clinical trials.


Critical Illness , Enteral Nutrition , Taurine , Taurine/therapeutic use , Humans , Critical Illness/therapy , Enteral Nutrition/methods , Treatment Outcome , Intensive Care Units , Length of Stay , Randomized Controlled Trials as Topic
3.
Cell Biol Toxicol ; 40(1): 36, 2024 May 21.
Article En | MEDLINE | ID: mdl-38771396

Purinergic receptor P2Y11, a G protein-coupled receptor that is stimulated by extracellular ATP, has been demonstrated to be related to the chemotaxis of granulocytes, apoptosis of neutrophils, and secretion of cytokines in vitro. P2Y11 mutations were associated with narcolepsy. However, little is known about the roles of P2RY11 in the occurrence of narcolepsy and inflammatory response in vivo. In this study, we generated a zebrafish P2Y11 mutant using CRISPR/Cas9 genome editing and demonstrated that the P2Y11 mutant replicated the narcolepsy-like features including reduced HCRT expression and excessive daytime sleepiness, suggesting that P2Y11 is essential for HCRT expression. Furthermore, we accessed the cytokine expression in the mutant and revealed that the P2RY11 mutation disrupted the systemic inflammatory balance by reducing il4, il10 and tgfb, and increasing il6, tnfa, and il1b. In addition, the P2RY11-deficient larvae with caudal fin injuries exhibited significantly slower migration and less recruitment of neutrophils and macrophages at damaged site, and lower expression of anti-inflammatory cytokines during tissue damage. All these findings highlight the vital roles of P2RY11 in maintaining HCRT production and secreting anti-inflammatory cytokines in the native environment, and suggested that P2RY11-deficient zebrafish can serve as a reliable and unique model to further explore narcolepsy and inflammatory-related diseases with impaired neutrophil and macrophage responses.


Cytokines , Inflammation , Macrophages , Neutrophils , Zebrafish Proteins , Zebrafish , Animals , Neutrophils/metabolism , Neutrophils/immunology , Macrophages/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Cytokines/metabolism , Mutation/genetics , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2/deficiency
4.
Front Plant Sci ; 15: 1403060, 2024.
Article En | MEDLINE | ID: mdl-38779066

Paclitaxel (trade name Taxol) is a rare diterpenoid with anticancer activity isolated from Taxus. At present, paclitaxel is mainly produced by the semi-synthetic method using extract of Taxus tissues as raw materials. The studies of regulatory mechanisms in paclitaxel biosynthesis would promote the production of paclitaxel through tissue/cell culture approaches. Here, we systematically identified 990 transcription factors (TFs), 460 microRNAs (miRNAs), and 160 phased small interfering RNAs (phasiRNAs) in Taxus chinensis to explore their interactions and potential roles in regulation of paclitaxel synthesis. The expression levels of enzyme genes in cone and root were higher than those in leaf and bark. Nearly all enzyme genes in the paclitaxel synthesis pathway were significantly up-regulated after jasmonate treatment, except for GGPPS and CoA Ligase. The expression level of enzyme genes located in the latter steps of the synthesis pathway was significantly higher in female barks than in male. Regulatory TFs were inferred through co-expression network analysis, resulting in the identification of TFs from diverse families including MYB and AP2. Genes with ADP binding and copper ion binding functions were overrepresented in targets of miRNA genes. The miRNA targets were mainly enriched with genes in plant hormone signal transduction, mRNA surveillance pathway, cell cycle and DNA replication. Genes in oxidoreductase activity, protein-disulfide reductase activity were enriched in targets of phasiRNAs. Regulatory networks were further constructed including components of enzyme genes, TFs, miRNAs, and phasiRNAs. The hierarchical regulation of paclitaxel production by miRNAs and phasiRNAs indicates a robust regulation at post-transcriptional level. Our study on transcriptional and posttranscriptional regulation of paclitaxel synthesis provides clues for enhancing paclitaxel production using synthetic biology technology.

5.
Elife ; 122024 May 15.
Article En | MEDLINE | ID: mdl-38747713

During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.


Actins , Endoplasmic Reticulum , Formins , Meiosis , Mitochondria , Oocytes , Animals , Endoplasmic Reticulum/metabolism , Oocytes/metabolism , Formins/metabolism , Formins/genetics , Mitochondria/metabolism , Mice , Actins/metabolism , Swine , Female , Spindle Apparatus/metabolism
6.
PLoS One ; 19(5): e0302839, 2024.
Article En | MEDLINE | ID: mdl-38696506

PURPOSES: Fractures of the inferior patellar pole, unlike other patellar fractures, present challenges for traditional surgical fixation methods. This article introduces the clinical technique and outcomes of using Kirschner wire tension band combined with anchor screw cross-stitch fixation for comminuted inferior patellar pole fractures. METHODS: This retrospective case series study included 14 patients with comminuted inferior patellar pole fractures treated at our institution from September 1, 2020, to April 30, 2022. All patients underwent surgery using the Kirschner wire tension band with anchor screw cross-stitch technique. Follow-up assessments involved postoperative X-rays to evaluate fracture healing, as well as clinical parameters such as healing time, Visual Analog Scale (VAS) scores, range of motion (ROM), and Bostman scores. RESULTS: All patients were followed for an average of over 12 months, with no cases of internal fixation failure. Knee joint stability and function were excellent. X-rays revealed an average healing time of approximately 10.79 ± 1.53 weeks, hospitalization lasted 5.64 ± 1.15 days, surgery took approximately 37.86 ± 5.32 minutes, and intraoperative blood loss was 33.29 ± 8.15 ml. One patient experienced irritation from the internal fixation material. At the final follow-up, the Bostman score averaged 28.29 ± 0.83, knee joint flexion reached 131.07° ± 4.88°, all patients achieved full knee extension, and the VAS score was 0.36 ± 0.63. CONCLUSION: Kirschner wire tension band with anchor screw cross-stitch fixation for comminuted inferior patellar pole fractures delivered satisfactory clinical outcomes. This surgical method, characterized by its simplicity and reliability, is a valuable addition to clinical practice.


Bone Wires , Fracture Fixation, Internal , Fractures, Comminuted , Patella , Humans , Male , Female , Adult , Patella/surgery , Patella/injuries , Fractures, Comminuted/surgery , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Retrospective Studies , Middle Aged , Range of Motion, Articular , Treatment Outcome , Fractures, Bone/surgery , Fracture Healing , Knee Joint/surgery , Knee Joint/physiopathology , Young Adult , Bone Screws , Suture Anchors
7.
Nat Commun ; 15(1): 4473, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796488

Assessing failure pressure is critical in determining pipeline integrity. Current research primarily concerns the buckling performance of pressurized pipelines subjected to a bending load or axial compression force, with some also looking at the failure pressure of corroded pipelines. However, there is currently a lack of limit state models for pressurized pipelines with bending moments and axial forces. In this study, based on the unified yield criterion, we propose a limit state equation for steel pipes under various loads. The most common operating loads on buried pipelines are bending moment, internal pressure, and axial force. The proposed limit state equation for intact pipelines is based on a three-dimensional pipeline stress model with complex load coupling. Using failure data, we investigate the applicability of various yield criteria in assessing the failure pressure of pipelines with complex loads. We show that the evaluation model can be effectively used as a theoretical solution for assessing the failure pressure in such circumstances and for selecting appropriate yield criteria based on load condition differences.

8.
Front Immunol ; 15: 1384640, 2024.
Article En | MEDLINE | ID: mdl-38720904

Background: For children with severe aplastic anemia, if the first immunosuppressive therapy (IST) fails, it is not recommended to choose a second IST. Therefore, for patients without matched sibling donor (MSD) and matched unrelated donor (MUD), haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) can be chosen as a salvage treatment. This article aims to explore the comparison between upfront Haplo-HSCT and salvage Haplo-HSCT after IST. Methods: 29 patients received salvage Haplo-HSCT, and 50 patients received upfront Haplo-HSCT. The two groups received Bu (Busulfan, 3.2mg/kg/d*2d on days -9 to-8), CY (Cyclophosphamide, 60mg/kg/d*2d on days -4 to-3), Flu (fludarabine, 40mg/m2/d*5d on days -9 to -5) and rabbit ATG (Anti-thymocyte globulin, total dose 10mg/kg divided into days -4 to -2). Results: The OS of the salvage Haplo-HSCT group showed no difference to the upfront Haplo-HSCT group (80.2 ± 8.0% vs. 88.7 ± 4.8%, p=0.37). The FFS of the salvage Haplo-HSCT group also showed no difference to the frontline Haplo-HSCT group (75 ± 8.2% vs. 84.9 ± 5.3%, p=0.27). There was no significant difference in the incidence of other complications after transplantation between the two groups, except for thrombotic microangiopathy (TMA). In the grouping analysis by graft source, the incidence of II-IV aGVHD in patients using PBSC ± BM+UCB was lower than that in the PBSC ± BM group (p=0.010). Conclusion: Upfront Haplo-HSCT and salvage Haplo-HSCT after IST in children with acquired severe aplastic anemia have similar survival outcomes. However, the risk of TMA increases after salvage Haplo-HSCT. This article provides some reference value for the treatment selection of patients. In addition, co-transplantation of umbilical cord blood may reduce the incidence of GVHD.


Anemia, Aplastic , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Salvage Therapy , Transplantation, Haploidentical , Humans , Anemia, Aplastic/therapy , Anemia, Aplastic/mortality , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Male , Female , Child , Child, Preschool , Salvage Therapy/methods , Adolescent , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Immunosuppressive Agents/therapeutic use , Transplantation Conditioning/methods , Infant , Treatment Outcome , Immunosuppression Therapy/methods
9.
Sci Rep ; 14(1): 10030, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693283

Ditylenchus destructor is a migratory plant-parasitic nematode that severely harms many agriculturally important crops. The control of this pest is difficult, thus efficient strategies for its management in agricultural production are urgently required. Cathepsin L-like cysteine protease (CPL) is one important protease that has been shown to participate in various physiological and pathological processes. Here we decided to characterize the CPL gene (Dd-cpl-1) from D. destructor. Analysis of Dd-cpl-1 gene showed that Dd-cpl-1 gene contains a signal peptide, an I29 inhibitor domain with ERFNIN and GNFD motifs, and a peptidase C1 domain with four conserved active residues, showing evolutionary conservation with other nematode CPLs. RT-qPCR revealed that Dd-cpl-1 gene displayed high expression in third-stage juveniles (J3s) and female adults. In situ hybridization analysis demonstrated that Dd-cpl-1 was expressed in the digestive system and reproductive organs. Silencing Dd-cpl-1 in 1-cell stage eggs of D. destructor by RNAi resulted in a severely delay in development or even in abortive morphogenesis during embryogenesis. The RNAi-mediated silencing of Dd-cpl-1 in J2s and J3s resulted in a developmental arrest phenotype in J3 stage. In addition, silencing Dd-cpl-1 gene expression in female adults led to a 57.43% decrease in egg production. Finally, Dd-cpl-1 RNAi-treated nematodes showed a significant reduction in host colonization and infection. Overall, our results indicate that Dd-CPL-1 plays multiple roles in D. destructor ontogenesis and could serve as a new potential target for controlling D. destructor.


Cathepsin L , Animals , Cathepsin L/genetics , Cathepsin L/metabolism , RNA Interference , Female , Gene Silencing , Cysteine Proteases/genetics , Cysteine Proteases/metabolism , Helminth Proteins/genetics , Helminth Proteins/metabolism , Phylogeny , Tylenchoidea/genetics , Tylenchoidea/physiology , Amino Acid Sequence
10.
Commun Biol ; 7(1): 596, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762629

Apicomplexan parasites harbor a complex endomembrane system as well as unique secretory organelles. These complex cellular structures require an elaborate vesicle trafficking system, which includes Rab GTPases and their regulators, to assure the biogenesis and secretory of the organelles. Here we exploit the model apicomplexan organism Toxoplasma gondii that encodes a family of Rab GTPase Activating Proteins, TBC (Tre-2/Bub2/Cdc16) domain-containing proteins. Functional profiling of these proteins in tachyzoites reveals that TBC9 is the only essential regulator, which is localized to the endoplasmic reticulum (ER) in T. gondii strains. Detailed analyses demonstrate that TBC9 is required for normal distribution of proteins targeting to the ER, and the Golgi apparatus in the parasite, as well as for the normal formation of daughter inner membrane complexes (IMCs). Pull-down assays show a strong protein interaction between TBC9 and specific Rab GTPases (Rab11A, Rab11B, and Rab2), supporting the role of TBC9 in daughter IMC formation and early vesicular transport. Thus, this study identifies the only essential TBC domain-containing protein TBC9 that regulates early vesicular transport and IMC formation in T. gondii and potentially in closely related protists.


Endoplasmic Reticulum , GTPase-Activating Proteins , Protozoan Proteins , Toxoplasma , rab GTP-Binding Proteins , Toxoplasma/metabolism , Toxoplasma/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Endoplasmic Reticulum/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Golgi Apparatus/metabolism , Protein Transport , Animals , Transport Vesicles/metabolism
11.
Invest Ophthalmol Vis Sci ; 65(5): 37, 2024 May 01.
Article En | MEDLINE | ID: mdl-38780946

Purpose: The purpose of this study was to analyze human corneal endothelial cells (HCECs) morphology and ocular biometrics in premature (PM) children with or without retinopathy of prematurity (ROP). Methods: Retrospective data on patient demographics, HCECs status, and ocular biometrics with at least 2 visits between 2016 and 2021 were reviewed. The main outcomes were endothelial cell density (ECD), coefficient of variation (CV), hexagonal cell ratio (HEX), central corneal thickness (CCT), axial length, anterior chamber depth, keratometry, corneal diameter, pupil diameter, and refraction status. Generalized estimating equation was used to evaluate the differences between PM no-ROP and ROP groups. We also analyzed the trend of ECD, CV, HEX, and CCT change with age between groups. Results: The study included 173 PM patients without ROP and 139 patients with ROP. A total of 666 and 544 measurements were recorded in the PM no-ROP and ROP groups, respectively. The ROP group had higher spherical power, myopic spherical equivalent (SE), and steeper steep keratometry (K; P < 0.05). The ROP group had higher CV (P = 0.0144), lower HEX (P = 0.0012) and thicker CCT (P = 0.0035). In the HCECs parameters, the ROP group had slower ECD decrement (P < 0.0001), faster CV decrement (P = 0.0060), and faster HEX increment (P = 0.0001). A difference in corneal morphology changes between the ROP and PM no-ROP groups were prominent in patients with lower gestational age (GA) in the subgroup analysis. Conclusions: Worse HCECs morphology and higher myopic status were initially observed in patients with prior ROP but not in PM patients with no-ROP. ECD and HCECs morphology improved with age, especially in patients with low GA.


Biometry , Endothelium, Corneal , Gestational Age , Infant, Premature , Retinopathy of Prematurity , Humans , Retinopathy of Prematurity/diagnosis , Retrospective Studies , Male , Female , Infant, Newborn , Endothelium, Corneal/pathology , Refraction, Ocular/physiology , Cell Count , Infant , Child, Preschool , Axial Length, Eye/pathology , Child
12.
Nucleic Acids Res ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38747349

Transposable elements (TEs) are abundant in the genomes of various eukaryote organisms. Increasing evidence suggests that TEs can play crucial regulatory roles-usually by creating cis-elements (e.g. enhancers and promoters) bound by distinct transcription factors (TFs). TE-derived cis-elements have gained unprecedented attentions recently, and one key step toward their understanding is to identify the enriched TEs in distinct genomic intervals (e.g. a set of enhancers or TF binding sites) as candidates for further study. Nevertheless, such analysis remains challenging for researchers unfamiliar with TEs or lack strong bioinformatic skills. Here, we present TEENA (Transposable Element ENrichment Analyzer) to streamline TE enrichment analysis in various organisms. It implements an optimized pipeline, hosts the genome/gene/TE annotations of almost one hundred species, and provides multiple parameters to enable its flexibility. Taking genomic interval data as the only user-supplied file, it can automatically retrieve the corresponding annotations and finish a routine analysis in a couple minutes. Multiple case studies demonstrate that it can produce highly reliable results matching previous knowledge. TEENA can be freely accessed at: https://sun-lab.yzu.edu.cn/TEENA. Due to its easy-to-use design, we expect it to facilitate the studies of the regulatory function of TEs in various model and non-model organisms.

13.
J Cell Mol Med ; 28(9): e18308, 2024 May.
Article En | MEDLINE | ID: mdl-38683131

Destruction of erythropoiesis process leads to various diseases, including thrombocytopenia, anaemia, and leukaemia. miR-429-CT10 regulation of kinase-like (CRKL) axis involved in development, progression and metastasis of cancers. However, the exact role of miR-429-CRKL axis in leukaemic cell differentiation are still unknown. The current work aimed to uncover the effect of miR-429-CRKL axis on erythropoiesis. In the present study, CRKL upregulation was negatively correlated with miR-429 downregulation in both chronic myeloid leukaemia (CML) patient and CR patient samples. Moreover, CRKL expression level was significantly decreased while miR-429 expression level was increased during the erythroid differentiation of K562 cells following hemin treatment. Functional investigations revealed that overexpression and knockdown of CRKL was remarkably effective in suppressing and promoting hemin-induced erythroid differentiation of K562 cells, whereas, miR-429 exhibited opposite effects to CRKL. Mechanistically, miR-429 regulates erythroid differentiation of K562 cells by downregulating CRKL via selectively targeting CRKL-3'-untranslated region (UTR) through Raf/MEK/ERK pathway. Conversely, CRKII had no effect on erythroid differentiation of K562 cells. Taken together, our data demonstrated that CRKL (but not CRKII) and miR-429 contribute to development, progression and erythropoiesis of CML, miR-429-CRKL axis regulates erythropoiesis of K562 cells via Raf/MEK/ERK pathway, providing novel insights into effective diagnosis and therapy for CML patients.


Adaptor Proteins, Signal Transducing , Cell Differentiation , Erythroid Cells , Hemin , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , MicroRNAs , Proto-Oncogene Proteins c-crk , Humans , 3' Untranslated Regions , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Differentiation/drug effects , Erythroid Cells/metabolism , Erythroid Cells/drug effects , Erythroid Cells/pathology , Erythroid Cells/cytology , Erythropoiesis/genetics , Erythropoiesis/drug effects , Gene Expression Regulation, Leukemic/drug effects , Hemin/pharmacology , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , MAP Kinase Signaling System/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-crk/metabolism , Proto-Oncogene Proteins c-crk/genetics
14.
Chem Commun (Camb) ; 60(40): 5290-5293, 2024 May 14.
Article En | MEDLINE | ID: mdl-38659401

Pt-based intermetallics exhibit excellent activity in electrocatalysis. However, their controlled syntheses remain difficult. Herein, carbon-supported PtM (M = Fe, Co, Ni, Zn and Mn) intermetallics with small size (3 nm) were prepared at the gramscale and applied as a highly effective electrocatalyst for the hydrogen evolution reaction.

15.
PLoS Biol ; 22(4): e3002566, 2024 Apr.
Article En | MEDLINE | ID: mdl-38652717

Phage therapy is a therapeutic approach to treat multidrug-resistant (MDR) infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells (AECs) derived from a person with cystic fibrosis (CF), we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.


Cystic Fibrosis , Cytokines , Epithelial Cells , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/virology , Epithelial Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/immunology , Cytokines/metabolism , Cystic Fibrosis/therapy , Cystic Fibrosis/immunology , Cystic Fibrosis/metabolism , Phage Therapy , Bacteriophages/physiology , Bacteriophages/genetics , Respiratory Mucosa/virology , Respiratory Mucosa/metabolism , Respiratory Mucosa/immunology , Pseudomonas Infections/therapy , Pseudomonas Infections/immunology , Pseudomonas Phages/metabolism , Biofilms
16.
Sci Adv ; 10(17): eadn1837, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38657072

Polycomb group (PcG) proteins mediate epigenetic silencing of important developmental genes by modifying histones and compacting chromatin through two major protein complexes, PRC1 and PRC2. These complexes are recruited to DNA by CpG islands (CGIs) in mammals and Polycomb response elements (PREs) in Drosophila. When PcG target genes are turned OFF, PcG proteins bind to PREs or CGIs, and PREs serve as anchors that loop together and stabilize gene silencing. Here, we address which PcG proteins bind to PREs and whether PREs mediate looping when their targets are in the ON transcriptional state. While the binding of most PcG proteins decreases at PREs in the ON state, one PRC1 component, Ph, remains bound. Further, PREs can loop to each other and with presumptive enhancers in the ON state and, like CGIs, may act as tethering elements between promoters and enhancers. Overall, our data suggest that PREs are important looping elements for developmental loci in both the ON and OFF states.


Drosophila Proteins , Polycomb-Group Proteins , Protein Binding , Response Elements , Transcription, Genetic , Animals , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , CpG Islands , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Chromatin/metabolism , Chromatin/genetics , Promoter Regions, Genetic
17.
Talanta ; 275: 126100, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38626498

This work reports the rational design of a composite material by growing FeCu-MOF-919 on the surface of layered Ti3C2Tx MXene. The introduction of Ti3C2Tx MXene simultaneously weakens the aggregation of FeCu-MOF-919 and Ti3C2Tx MXene, which increases the electrochemical reaction active site of the composite material and improves the electrochemical activity. Interestingly, the FeCu-MOF-919/Ti3C2Tx based sensors were used to detect resorcinol (RS) with a wide linear range (0.5-152.5 µM), excellent sensitivity (0.23 µA µM-1 cm-2), low limit of detection (LOD = 0.08 µM) and outstanding stability. Meanwhile, the sensor shows high repeatability of 1.07 % RSD, reproducibility of 1.47 % RSD and anti-interference performance. What's more, the sensor can be successfully used to detect RS in tap water with good recoveries (96.25-103.37 %, RSD ≤2.18 %), demonstrating that the FeCu-MOF-919/Ti3C2Tx exhibits significant potential as an advanced sensing apparatus for the surveillance of RS in the natural environment.

18.
Environ Sci Pollut Res Int ; 31(20): 30072-30084, 2024 Apr.
Article En | MEDLINE | ID: mdl-38594564

Complex wastewater matrices such as printed circuit board (PCB) manufacturing wastewater present a major environmental concern. In this work, simultaneous decomplexation of metal complex Cu-EDTA and reduction/electrodeposition of Cu2+ was conducted in a persulfate-based electrochemical oxidation system. Oxidizing/reductive species were simultaneously produced in this system, which realized 99.8% of Cu-EDTA decomplexation, 94.5% of Cu2+ reduction/electrodeposition under the conditions of original solution pH = 3.2, electrode distance = 3 cm, [Na2S2O8]0 = 5 mM, current density = 12 mA/cm2, and reaction time = 180 min. The total treatment cost is as low as 0.80 USD/mol Cu-EDTA. Effective mineralization (74.1% total organic carbon removal) of the solution was obtained after 3 h of treatment. •OH and SO4•- drove the Cu-EDTA decomplexation, destroying the chelating sites and finally it was effectively mineralized to CO2, H2O and Cu2+. The mechanisms of copper electrodeposition on the stainless steel cathode and persulfate activation by the BDD anode were proposed based on the electrochemical measurements. The electrodes exhibited excellent reusability and low metal (total iron and Ni2+) leaching during 20 cycles of application. This study provide an effective and sustainable method for the application of the electro-persulfate process in treating complex wastewater matrices.


Copper , Edetic Acid , Electroplating , Oxidation-Reduction , Wastewater , Wastewater/chemistry , Copper/chemistry , Edetic Acid/chemistry , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Electrochemical Techniques , Sulfates/chemistry , Electrodes
19.
Inorg Chem ; 63(15): 6714-6722, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38557020

Converting CO2 into valuable chemicals via sustainable energy sources is indispensable for human development. Photothermal catalysis combines the high selectivity of photocatalysis and the high yield of thermal catalysis, which is promising for CO2 reduction. However, the present photothermal catalysts suffer from low activity due to their poor light absorption ability and fast recombination of photogenerated electrons and holes. Here, a TiO2@Bi2WO6 heterojunction photocatalyst featuring a hierarchical hollow structure was prepared by an in situ growth method. The visible light absorption and photothermal effect of the TiO2@Bi2WO6 photocatalyst is promoted by a hierarchical hollow structure, while the recombination phenomenon is significantly mitigated due to the construction of the heterojunction interface and the existence of excited Bi(3-x)+ sites. Such a catalyst exhibits excellent photothermal performance with a CO yield of 43.7 µmol h-1 g-1, which is 15 and 4.7 times higher than that of pure Bi2WO6 and that of physically mixed TiO2/Bi2WO6, respectively. An in situ study shows that the pathway for the transformation of CO2 into CO over our TiO2@Bi2WO6 proceeds via two important intermediates, including COO- and COOH-. Our work provides a new idea of excited states for the design and synthesis of highly efficient photothermal catalysts for CO2 conversion.

20.
Natl Sci Rev ; 11(5): nwae085, 2024 May.
Article En | MEDLINE | ID: mdl-38577670

Catalytic oxidative desulfurization (ODS) using titanium silicate catalysts has emerged as an efficient technique for the complete removal of organosulfur compounds from automotive fuels. However, the precise control of highly accessible and stable-framework Ti active sites remains highly challenging. Here we reveal for the first time by using density functional theory calculations that framework hexa-coordinated Ti (TiO6) species of mesoporous titanium silicates are the most active sites for ODS and lead to a lower-energy pathway of ODS. A novel method to achieve highly accessible and homogeneously distributed framework TiO6 active single sites at the mesoporous surface has been developed. Such surface framework TiO6 species exhibit an exceptional ODS performance. A removal of 920 ppm of benzothiophene is achieved at 60°C in 60 min, which is 1.67 times that of the best catalyst reported so far. For bulky molecules such as 4,6-dimethyldibenzothiophene (DMDBT), it takes only 3 min to remove 500 ppm of DMDBT at 60°C with our catalyst, which is five times faster than that with the current best catalyst. Such a catalyst can be easily upscaled and could be used for concrete industrial application in the ODS of bulky organosulfur compounds with minimized energy consumption and high reaction efficiency.

...