Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
Front Plant Sci ; 15: 1449826, 2024.
Article in English | MEDLINE | ID: mdl-39109063

ABSTRACT

Grain albumin is highly nutritious and closely related to the processing quality of wheat. However, few studies have explored the grain albumin content (GAC) in wheat. This study aims to uncover quantitative trait loci (QTLs) linked to wheat GAC by analyzing a doubled haploid (DH) population derived from common wheat cultivars ShanNong23 and ZhouMai17. We detected six QTLs controlling GAC on chromosomes 1B, 5A, and 6D, with individual QTL explaining 5.78% to 22.29% of the GAC variation. The effect of QGac.cau-1B.1 on GAC is attributed to the presence of the 1BL/1RS translocation, indicating that the 1BL/1RS translocation increase of GAC compared with the non-1BL/1RS translocation lines. The higher GAC observed in 1BL/1RS lines could be primarily attributed to the increased accumulation of omega-secalin, omega-gliadin, low molecular weight glutenin subunit and ribosomal protein content. Additionally, we also found that the SDS-sedimentation value of whole wheat flour was decreased by adding albumin solution. These results advance our understanding of the genetic basis of GAC and offer novel perspectives for enhancing wheat quality through genetic enhancements.

2.
Sci Adv ; 10(35): eadp5541, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39196932

ABSTRACT

Leaves play a crucial role in photosynthesis and respiration, ultimately affecting the final grain yield of crops, including wheat (Triticum aestivum L.); however, the molecular mechanisms underlying wheat leaf development remain largely unknown. Here, we isolated a narrow-leaf gene, TaWAK2-A, through a map-based cloning strategy. TaWAK2-A encodes a wall-associated kinase (WAK), for which a single Ala-to-Val amino acid substitution reduces the protein stability, leading to a narrow-leaf phenotype in wheat. Further investigation suggests that TaWAK2 directly interacts with and phosphorylates TaNAL1, a trypsin-like serine/cysteine protease. The phosphorylated TaNAL1 is then involved in the degradation of the zinc finger transcription factor TaDST, which acts as a repressor of leaf expansion by activating the expression of the cytokinin oxidase gene TaCKX9 and triggering in vivo cytokinin degradation. Therefore, our findings elucidate a signaling cascade involving TaWAK2-TaNAL1-TaDST that sheds light on the regulation of wheat leaf development.


Subject(s)
Cytokinins , Gene Expression Regulation, Plant , Plant Leaves , Plant Proteins , Signal Transduction , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Cytokinins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Phosphorylation , Phenotype
3.
Theor Appl Genet ; 137(9): 203, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39134836

ABSTRACT

The common wheat line 4N0461 showed adult-plant resistance to leaf rust. 4N0461 was crossed with susceptible cultivars Nongda4503 and Shi4185 to map the causal resistance gene(s). Segregation of leaf rust response in F2 populations from both crosses was 9 resistant:7 susceptible, indicative of two complementary dominant resistance genes. The genes were located on chromosome arms 3BS and 4BL and temporarily named LrN3B and LrN4B, respectively. Subpopulations from 4N0461 × Nongda4503 with LrN3B segregating as a single allele were used to fine-map LrN3B locus. LrN3B was delineated in a genetic interval of 0.07 cM, corresponding to 106 kb based on the Chinese Spring reference genome (IWGSC RefSeq v1.1). Four genes were annotated in this region, among which TraesCS3B02G014800 and TraesCS3B02G014900 differed between resistant and susceptible genotypes, and both were required for LrN3B resistance in virus-induced gene silencing experiments. Diagnostic markers developed for checking the polymorphism of each candidate gene, can be used for marker-assisted selection in wheat breeding programs.


Subject(s)
Basidiomycota , Chromosome Mapping , Chromosomes, Plant , Disease Resistance , Genes, Plant , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Basidiomycota/pathogenicity , Basidiomycota/physiology , Chromosomes, Plant/genetics , Genetic Markers , Genotype , Alleles
4.
Genome Biol ; 25(1): 171, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951917

ABSTRACT

BACKGROUND: The massive structural variations and frequent introgression highly contribute to the genetic diversity of wheat, while the huge and complex genome of polyploid wheat hinders efficient genotyping of abundant varieties towards accurate identification, management, and exploitation of germplasm resources. RESULTS: We develop a novel workflow that identifies 1240 high-quality large copy number variation blocks (CNVb) in wheat at the pan-genome level, demonstrating that CNVb can serve as an ideal DNA fingerprinting marker for discriminating massive varieties, with the accuracy validated by PCR assay. We then construct a digitalized genotyping CNVb map across 1599 global wheat accessions. Key CNVb markers are linked with trait-associated introgressions, such as the 1RS·1BL translocation and 2NvS translocation, and the beneficial alleles, such as the end-use quality allele Glu-D1d (Dx5 + Dy10) and the semi-dwarf r-e-z allele. Furthermore, we demonstrate that these tagged CNVb markers promote a stable and cost-effective strategy for evaluating wheat germplasm resources with ultra-low-coverage sequencing data, competing with SNP array for applications such as evaluating new varieties, efficient management of collections in gene banks, and describing wheat germplasm resources in a digitalized manner. We also develop a user-friendly interactive platform, WheatCNVb ( http://wheat.cau.edu.cn/WheatCNVb/ ), for exploring the CNVb profiles over ever-increasing wheat accessions, and also propose a QR-code-like representation of individual digital CNVb fingerprint. This platform also allows uploading new CNVb profiles for comparison with stored varieties. CONCLUSIONS: The CNVb-based approach provides a low-cost and high-throughput genotyping strategy for enabling digitalized wheat germplasm management and modern breeding with precise and practical decision-making.


Subject(s)
DNA Copy Number Variations , Triticum , Triticum/genetics , Genome, Plant , High-Throughput Nucleotide Sequencing , Genetic Markers , Alleles
6.
Mol Plant ; 17(7): 1038-1053, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38796709

ABSTRACT

Wheat is a staple food for more than 35% of the world's population, with wheat flour used to make hundreds of baked goods. Superior end-use quality is a major breeding target; however, improving it is especially time-consuming and expensive. Furthermore, genes encoding seed-storage proteins (SSPs) form multi-gene families and are repetitive, with gaps commonplace in several genome assemblies. To overcome these barriers and efficiently identify superior wheat SSP alleles, we developed "PanSK" (Pan-SSP k-mer) for genotype-to-phenotype prediction based on an SSP-based pangenome resource. PanSK uses 29-mer sequences that represent each SSP gene at the pangenomic level to reveal untapped diversity across landraces and modern cultivars. Genome-wide association studies with k-mers identified 23 SSP genes associated with end-use quality that represent novel targets for improvement. We evaluated the effect of rye secalin genes on end-use quality and found that removal of ω-secalins from 1BL/1RS wheat translocation lines is associated with enhanced end-use quality. Finally, using machine-learning-based prediction inspired by PanSK, we predicted the quality phenotypes with high accuracy from genotypes alone. This study provides an effective approach for genome design based on SSP genes, enabling the breeding of wheat varieties with superior processing capabilities and improved end-use quality.


Subject(s)
Genome-Wide Association Study , Genotype , Phenotype , Triticum , Triticum/genetics , Genome-Wide Association Study/methods , Seed Storage Proteins/genetics , Genome, Plant , Seeds/genetics , Plant Breeding/methods , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Theor Appl Genet ; 137(6): 121, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709317

ABSTRACT

KEY MESSAGE: This study precisely mapped and validated a quantitative trait locus (QTL) located on chromosome 4B for flag leaf angle in wheat. Flag leaf angle (FLANG) is closely related to crop architecture and yield. We previously identified the quantitative trait locus (QTL) QFLANG-4B for FLANG on chromosome 4B, located within a 14-cM interval flanked by the markers Xbarc20 and Xzyh357, using a mapping population of recombinant inbred lines (RILs) derived from a cross between Nongda3331 (ND3331) and Zang1817. In this study, we fine-mapped QFLANG-4B and validated its associated genetic effect. We developed a BC3F3 population using ND3331 as the recurrent parent through marker-assisted selection, as well as near-isogenic lines (NILs) by selfing BC3F3 plants carrying different heterozygous segments for the QFLANG-4B region. We obtained eight recombinant types for QFLANG-4B, narrowing its location down to a 5.3-Mb region. This region contained 76 predicted genes, 7 of which we considered to be likely candidate genes for QFLANG-4B. Marker and phenotypic analyses of individual plants from the secondary mapping populations and their progeny revealed that the FLANG of the ND3331 allele is significantly higher than that of the Zang1817 allele in multiple environments. These results not only provide a basis for the map-based cloning of QFLANG-4B, but also indicate that QFLANG-4B has great potential for marker-assisted selection in wheat breeding programs designed to improve plant architecture and yield.


Subject(s)
Chromosome Mapping , Plant Leaves , Quantitative Trait Loci , Triticum , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Genes, Plant , Genetic Linkage , Genetic Markers , Phenotype , Plant Breeding , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/growth & development , Triticum/genetics , Triticum/growth & development , Triticum/anatomy & histology
8.
Case Rep Hematol ; 2024: 5593775, 2024.
Article in English | MEDLINE | ID: mdl-38737168

ABSTRACT

The efficacy of therapeutics for acute promyelocytic leukemia (APL) has exhibited an increase in recent years. Only a few patients experience relapse, including extramedullary relapse, and in patients with extramedullary relapse, the central nervous system (CNS) is the most common site. To date, there is no expert consensus or clinical guidelines available for CNS relapse, at least to the best of our knowledge. The optimal therapeutic strategy and management options for these patients remain unclear. The present study reports the treatment of a patient with APL with multiple isolated relapses in the CNS. In addition, through a mini-review of the literature, the present study provides a summary of various reports of this disease and discusses possible treatment options for these patients.

9.
New Phytol ; 242(6): 2510-2523, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38629267

ABSTRACT

Seminal roots play a critical role in water and nutrient absorption, particularly in the early developmental stages of wheat. However, the genes responsible for controlling SRN in wheat remain largely unknown. Genetic mapping and functional analyses identified a candidate gene (TraesCS3D01G137200, TaSRN-3D) encoding a Ser/Thr kinase glycogen synthase kinase 3 (STKc_GSK3) that regulated SRN in wheat. Additionally, experiments involving hormone treatment, nitrate absorption and protein interaction were conducted to explore the regulatory mechanism of TaSRN-3D. Results showed that the TaSRN-3D4332 allele inhibited seminal roots initiation and development, while loss-of-function mutants showed significantly higher seminal root number (SRN). Exogenous application of epi-brassinolide could increase the SRN in a HS2-allelic background. Furthermore, chlorate sensitivity and 15N uptake assays revealed that a higher number of seminal roots promoted nitrate accumulation. TaBSR1 (BIN2-related SRN Regulator 1, orthologous to OsGRF4/GL2 in rice) acts as an interactor of TaSRN-3D and promotes TaBSR1 degradation to reduce SRN. This study provides valuable insights into understanding the genetic basis and regulatory network of SRN in wheat, highlighting their roles as potential targets for root-based improvement in wheat breeding.


Subject(s)
Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins , Plant Roots , Triticum , Alleles , Brassinosteroids/metabolism , Chromosome Mapping , Genes, Plant , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/genetics , Mutation/genetics , Nitrates/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Triticum/genetics , Triticum/metabolism
10.
aBIOTECH ; 5(1): 52-70, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38576428

ABSTRACT

Bread wheat (Triticum aestivum) is an important crop and serves as a significant source of protein and calories for humans, worldwide. Nevertheless, its large and allopolyploid genome poses constraints on genetic improvement. The complex reticulate evolutionary history and the intricacy of genomic resources make the deciphering of the functional genome considerably more challenging. Recently, we have developed a comprehensive list of versatile computational tools with the integration of statistical models for dissecting the polyploid wheat genome. Here, we summarize the methodological innovations and applications of these tools and databases. A series of step-by-step examples illustrates how these tools can be utilized for dissecting wheat germplasm resources and unveiling functional genes associated with important agronomic traits. Furthermore, we outline future perspectives on new advanced tools and databases, taking into consideration the unique features of bread wheat, to accelerate genomic-assisted wheat breeding.

11.
Sci Adv ; 10(15): eadk4027, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608020

ABSTRACT

Drought is a major global challenge in agriculture that decreases crop production. γ-Aminobutyric acid (GABA) interfaces with drought stress in plants; however, a mechanistic understanding of the interaction between GABA accumulation and drought response remains to be established. Here we showed the potassium/proton exchanger TaNHX2 functions as a positive regulator in drought resistance in wheat by mediating cross-talk between the stomatal aperture and GABA accumulation. TaNHX2 interacted with glutamate decarboxylase TaGAD1, a key enzyme that synthesizes GABA from glutamate. Furthermore, TaNHX2 targeted the C-terminal auto-inhibitory domain of TaGAD1, enhanced its activity, and promoted GABA accumulation under drought stress. Consistent with this, the tanhx2 and tagad1 mutants showed reduced drought tolerance, and transgenic wheat with enhanced TaNHX2 expression had a yield advantage under water deficit without growth penalty. These results shed light on the plant stomatal movement mechanism under drought stress and the TaNHX2-TaGAD1 module may be harnessed for amelioration of negative environmental effects in wheat as well as other crops.


Subject(s)
Drought Resistance , Triticum , Triticum/genetics , Glutamic Acid , Membrane Transport Proteins , Potassium , gamma-Aminobutyric Acid
12.
Plant Cell ; 36(7): 2607-2628, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38537937

ABSTRACT

Cold injury is a major environmental stress affecting the growth and yield of crops. Brassinosteroids (BRs) and salicylic acid (SA) play important roles in plant cold tolerance. However, whether or how BR signaling interacts with the SA signaling pathway in response to cold stress is still unknown. Here, we identified an SA methyltransferase, TaSAMT1 that converts SA to methyl SA (MeSA) and confers freezing tolerance in wheat (Triticum aestivum). TaSAMT1 overexpression greatly enhanced wheat freezing tolerance, with plants accumulating more MeSA and less SA, whereas Tasamt1 knockout lines were sensitive to freezing stress and accumulated less MeSA and more SA. Spraying plants with MeSA conferred freezing tolerance to Tasamt1 mutants, but SA did not. We revealed that BRASSINAZOLE-RESISTANT 1 (TaBZR1) directly binds to the TaSAMT1 promoter and induces its transcription. Moreover, TaBZR1 interacts with the histone acetyltransferase TaHAG1, which potentiates TaSAMT1 expression via increased histone acetylation and modulates the SA pathway during freezing stress. Additionally, overexpression of TaBZR1 or TaHAG1 altered TaSAMT1 expression and improved freezing tolerance. Our results demonstrate a key regulatory node that connects the BR and SA pathways in the plant cold stress response. The regulatory factors or genes identified could be effective targets for the genetic improvement of freezing tolerance in crops.


Subject(s)
Brassinosteroids , Freezing , Gene Expression Regulation, Plant , Methyltransferases , Plant Proteins , Salicylic Acid , Signal Transduction , Triticum , Triticum/genetics , Triticum/physiology , Triticum/metabolism , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics
13.
Nat Commun ; 15(1): 2097, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453935

ABSTRACT

Heat stress threatens global wheat (Triticum aestivum) production, causing dramatic yield losses worldwide. Identifying heat tolerance genes and comprehending molecular mechanisms are essential. Here, we identify a heat tolerance gene, TaSG-D1E286K, in Indian dwarf wheat (Triticum sphaerococcum), which encodes an STKc_GSK3 kinase. TaSG-D1E286K improves heat tolerance compared to TaSG-D1 by enhancing phosphorylation and stability of downstream target TaPIF4 under heat stress condition. Additionally, we reveal evolutionary footprints of TaPIF4 during wheat selective breeding in China, that is, InDels predominantly occur in the TaPIF4 promoter of Chinese modern wheat cultivars and result in decreased expression level of TaPIF4 in response to heat stress. These sequence variations with negative effect on heat tolerance are mainly introduced from European germplasm. Our study provides insight into heat stress response mechanisms and proposes a potential strategy to improve wheat heat tolerance in future.


Subject(s)
Thermotolerance , Triticum , Triticum/physiology , Thermotolerance/genetics , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Heat-Shock Response/genetics , China
14.
Plant Commun ; 5(5): 100883, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38491771

ABSTRACT

Spelt (Triticum aestivum ssp. spelta) is an important wheat subspecies mainly cultivated in Europe before the 20th century that has contributed to modern wheat breeding as a valuable genetic resource. However, relatively little is known about the origins and maintenance of spelt populations. Here, using resequencing data from 416 worldwide wheat accessions, including representative spelt wheat, we demonstrate that European spelt emerged when primitive hexaploid wheat spread to the west and hybridized with pre-settled domesticated emmer, the putative maternal donor. Genomic introgression regions from domesticated emmer confer spelt's primitive morphological characters used for species taxonomy, such as tenacious glumes and later flowering. We propose a haplotype-based "spelt index" to identify spelt-type wheat varieties and to quantify utilization of the spelt gene pool in modern wheat cultivars. This study reveals the genetic basis for the establishment of the spelt wheat subspecies in a specific ecological niche and the vital role of the spelt gene pool as a unique germplasm resource in modern wheat breeding.


Subject(s)
Gene Pool , Genome, Plant , Plant Breeding , Triticum , Triticum/genetics , Haplotypes , Genomics , Evolution, Molecular
15.
Plant Cell Environ ; 47(6): 2310-2321, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38494960

ABSTRACT

Grain protein content (GPC) is a crucial quality trait in bread wheat, which is influenced by the key transcription factor TaNAM. However, the regulatory mechanisms of TaNAM have remained largely elusive. In this study, a new role of TaNAM was unveiled in regulating nitrogen remobilisation which impacts GPC. The TaNAM knockout mutants generated by clustered regularly interspaced short palindromic repeats/Cas9 exhibited significantly delayed senescence and lower GPC, while overexpression of TaNAM-6A resulted in premature senility and much higher GPC. Further analysis revealed that TaNAM directly activates the genes TaNRT1.1 and TaNPF5.5s, which are involved in nitrogen remobilisation. This activity aids in the transfer of nitrogen from leaves to grains for protein synthesis. In addition, an elite allele of TaNAM-6A, associated with high GPC, was identified as a candidate gene for breeding high-quality wheat. Overall, our work not only elucidates the potential mechanism of TaNAM-6A affecting bread wheat GPC, but also highlights the significance of nitrogen remobilisation from senescent leaves to grains for protein accumulation. Moreover, our research provides a new target and approach for improving the quality traits of wheat, particularly the GPC.


Subject(s)
Nitrogen , Triticum , Triticum/genetics , Triticum/metabolism , Nitrogen/metabolism , Grain Proteins/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Transcription Factors/genetics , Edible Grain/metabolism , Edible Grain/genetics , Plant Leaves/metabolism , Plant Leaves/genetics
16.
New Phytol ; 242(2): 507-523, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38362849

ABSTRACT

Polyploidization is a major event driving plant evolution and domestication. However, how reshaped epigenetic modifications coordinate gene transcription to generate phenotypic variations during wheat polyploidization is currently elusive. Here, we profiled transcriptomes and DNA methylomes of two diploid wheat accessions (SlSl and AA) and their synthetic allotetraploid wheat line (SlSlAA), which displayed elongated root hair and improved root capability for nitrate uptake and assimilation after tetraploidization. Globally decreased DNA methylation levels with a reduced difference between subgenomes were observed in the roots of SlSlAA. DNA methylation changes in first exon showed strong connections with altered transcription during tetraploidization. Homoeolog-specific transcription was associated with biased DNA methylation as shaped by homoeologous sequence variation. The hypomethylated promoters showed significantly enriched binding sites for MYB, which may affect gene transcription in response to root hair growth. Two master regulators in root hair elongation pathway, AlCPC and TuRSL4, exhibited upregulated transcription levels accompanied by hypomethylation in promoter, which may contribute to the elongated root hair. The upregulated nitrate transporter genes, including NPFs and NRTs, also are significantly associated with hypomethylation, indicating an epigenetic-incorporated regulation manner in improving nitrogen use efficiency. Collectively, these results provided new insights into epigenetic changes in response to crop polyploidization and underscored the importance of epigenetic regulation in improving crop traits.


Subject(s)
DNA Methylation , Tetraploidy , DNA Methylation/genetics , Triticum/genetics , Epigenesis, Genetic , Transcriptome , Gene Expression Regulation, Plant
17.
Theor Appl Genet ; 137(2): 43, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38321245

ABSTRACT

KEY MESSAGE: A locus conferring Fusarium crown rot resistance was identified on chromosome arm 3DL through genome wide association study and further validated in two recombinant inbred lines populations. Fusarium crown rot (FCR) is a severe soil borne disease in many wheat growing regions of the world. In this study, we attempted to detect loci conferring FCR resistance through a new seedling inoculation assay. A total of 223 wheat accessions from different geography origins were used to assemble an association panel for GWAS analysis. Four genotypes including Heng 4332, Luwanmai, Pingan 998 and Yannong 24 showed stable resistance to FCR. A total of 54 SNPs associated with FCR resistance were identified. Among the 10 putative QTLs represented by these SNPs, seven QTLs on chromosome 2B, 3A, 3D, 4A, 7A and 7B were novel and were consistently detected in at least two of the three trials conducted. Qfcr.cau.3D-3, which was targeted by 38 SNPs clustered within a genomic region of approximately 5.57 Mb (609.12-614.69 Mb) on chromosome arm 3DL, was consistently detected in all the three trials. The effects of Qfcr.cau.3D-3 were further validated in two recombinant inbred line populations. The presence of this locus reduced FCR severity up to 21.55%. Interestingly, the collinear positions of sequences containing the four SNPs associated with two FCR loci (Qfcr.cau.3A and Qfcr.cau.3B) were within the regions of Qfcr.cau.3D-3, suggesting that genes underlying these three loci may be homologous. Our results provide useful information for improving FCR resistance in wheat.


Subject(s)
Fusarium , Genome-Wide Association Study , Triticum/genetics , Disease Resistance/genetics , Quantitative Trait Loci , Plant Diseases/genetics
18.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 274-281, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38387934

ABSTRACT

OBJECTIVE: To construct recombinant lentivirus and adenovirus which regulate the expression of c-Cbl gene and evaluate their efficacy. METHODS: The interference lentivirus and overexpressed adenovirus targeting human c-Cbl gene were constructed by gene recombination technology. Quantitative PCR and western blotting were used to detect the expression changes in c-Cbl gene and its transcription after leukemia cells (HL60,THP1) were infected by virus. RESULTS: Three recombinant interfering lentiviral vectors targeting human c-Cbl genes to successfully constructed and were identified by DNA sequencing, and the titers of the packaged viruses were all greater than 1×108 TU/ml. Among them, shRNA-2 lentivirus had the highest interference efficiency, and the expression of c-Cbl gene and CBL protein were decreased about 95% and 60% respectively after leukemia cells were infected with shRNA-2; In addition, the recombinant overexpression adenovirus targeting human c-Cbl gene was packaged successfully with the virus titer greater than 1×109 TU/ml. When leukemia cells were infected with adenovirus, the expression of c-Cbl gene and CBL protein were up-regulated about 10 times and 1.5 times respectively. CONCLUSION: Both recombinant interfering lentivirus and overexpression adenovirus can efficiently infect leukemia cells and affect the expressions of c-Cbl gene and CBL protein. It will lay a preliminary foundation for the subsequent study on the function of c-Cbl gene in tumor cells.


Subject(s)
Genetic Vectors , Leukemia , Humans , Adenoviridae/genetics , Lentivirus/genetics , RNA, Small Interfering/genetics
19.
Plant Biotechnol J ; 22(1): 200-215, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37752705

ABSTRACT

Grain size is one of the important traits in wheat breeding programs aimed at improving yield, and cytokinins, mainly involved in cell division, have a positive impact on grain size. Here, we identified a novel wheat gene TaMADS-GS encoding type I MADS-box transcription factor, which regulates the cytokinins signalling pathway during early stages of grain development to modulate grain size and weight in wheat. TaMADS-GS is exclusively expressed in grains at early stage of seed development and its knockout leads to delayed endosperm cellularization, smaller grain size and lower grain weight. TaMADS-GS protein interacts with the Polycomb Repressive Complex 2 (PRC2) and leads to repression of genes encoding cytokinin oxidase/dehydrogenases (CKXs) stimulating cytokinins inactivation by mediating accumulation of the histone H3 trimethylation at lysine 27 (H3K27me3). Through the screening of a large wheat germplasm collection, an elite allele of the TaMADS-GS exhibits higher ability to repress expression of genes inactivating cytokinins and a positive correlation with grain size and weight, thus representing a novel marker for breeding programs in wheat. Overall, these findings support the relevance of TaMADS-GS as a key regulator of wheat grain size and weight.


Subject(s)
Endosperm , Transcription Factors , Transcription Factors/genetics , Endosperm/metabolism , Triticum/metabolism , Plant Breeding , Edible Grain , Cytokinins/metabolism , Gene Expression Regulation, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL