Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 366: 121687, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986374

ABSTRACT

Enzyme-induced carbonate precipitation (EICP) is a promising technique for soil reinforcement. To select a suitable calcium source and a suitable solution amount for aeolian sand stabilization using EICP, specimens treated with different solution amounts (1.5, 2, 2.5, 3, and 3.5 L/m2). Surface strength, crust thickness, calcium carbonate content (CCC) and water vapor adsorption tests were performed to evaluate the effect of two calcium sources (calcium acetate and calcium chloride) on aeolian sand solidification. The plant suitability of solidified sand was investigated by the sea buckthorn growth test. The suitable calcium source was then used for the laboratory wind tunnel test and the field test to examine the erosion resistance of solidified sand. The results demonstrated that Ca(CH3COO)2-treated specimens exhibited higher strength than CaCl2-treated specimens at the same EICP solution amount, and the water vapor equilibrium adsorption mass of Ca(CH3COO)2-treated specimens was less, indicating that Ca(CH3COO)2-solidified sand was more effective and had better long-term stability. In addition, plants grown in Ca(CH3COO)2-treated sand had greater seedling emergence percentage and higher average height, which indicated that calcium acetate is a more suitable calcium source for EICP treatment. Furthermore, the surface strength and crust thickness of solidified sand increased with increasing the solution amount. For sand treated with 3 L/m2 of solution, the excessive strength and thickness of the crust made plants growth difficult, and the performance of sand treated with more than 2 L/m2 of solution significantly improved. Thus, the solution amount of 2-3 L/m2 is suggested for engineering applications. The sand solidified using EICP in the field could effectively mitigate wind erosion and facilitate the growth of native plants. Therefore, EICP can be combined with vegetative method to achieve long-term wind erosion control in the future.

2.
Nat Commun ; 15(1): 5509, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951533

ABSTRACT

Shape transformations of active composites (ACs) depend on the spatial distribution of constituent materials. Voxel-level complex material distributions can be encoded by 3D printing, offering enormous freedom for possible shape-change 4D-printed ACs. However, efficiently designing the material distribution to achieve desired 3D shape changes is significantly challenging yet greatly needed. Here, we present an approach that combines machine learning (ML) with both gradient-descent (GD) and evolutionary algorithm (EA) to design AC plates with 3D shape changes. A residual network ML model is developed for the forward shape prediction. A global-subdomain design strategy with ML-GD and ML-EA is then used for the inverse material-distribution design. For a variety of numerically generated target shapes, both ML-GD and ML-EA demonstrate high efficiency. By further combining ML-EA with a normal distance-based loss function, optimized designs are achieved for multiple irregular target shapes. Our approach thus provides a highly efficient tool for the design of 4D-printed active composites.

3.
J Orthop Surg Res ; 19(1): 342, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849945

ABSTRACT

BACKGROUND: Endoscopic spine lumbar interbody fusion (Endo-LIF) is well-regarded within the academic community. However, it presents challenges such as intraoperative disorientation, high rates of nerve damage, a steep learning curve, and prolonged surgical times, often occurring during the creation of the operative channel. Furthermore, the undefined safe operational zones under endoscopy continue to pose risks to surgical safety. We aimed to analyse the anatomical data of Kambin's triangle via CT imaging to define the parameters of the safe operating area for transforaminal posterior lumbar interbody fusion (TPLIF), providing crucial insights for clinical practice. METHODS: We selected the L4-L5 intervertebral space. Using three-dimensional (3D), we identified Kambin's triangle and the endocircle within it, and recorded the position of point 'J' on the adjacent facet joint as the centre 'O' of the circle shifts by angle 'ß.' The diameter of the inscribed circle 'd,' the abduction angle 'ß,' and the distances 'L1' and 'L2' were measured from the trephine's edge to the exiting and traversing nerve roots, respectively. RESULTS: Using a trephine with a diameter of 8 mm in TPLIF has a significant safety distance. The safe operating area under the TPLIF microscope was also clarified. CONCLUSIONS: Through CT imaging research, combined with 3D simulation, we identified the anatomical data of the L4-L5 segment Kambin's triangle, to clarify the safe operation area under TPLIF. We propose a simple and easy positioning method and provide a novel surgical technique to establish working channels faster and reduce nerve damage rates. At the same time, according to this method, the Kambin's triangle anatomical data of the patient's lumbar spine diseased segments can be measured through CT 3D reconstruction of the lumbar spine, and individualised preoperative design can be conducted to select the appropriate specifications of visible trephine and supporting tools. This may effectively reduce the learning curve, shorten the time operation time, and improve surgical safety.


Subject(s)
Imaging, Three-Dimensional , Lumbar Vertebrae , Spinal Fusion , Tomography, X-Ray Computed , Humans , Spinal Fusion/methods , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Imaging, Three-Dimensional/methods , Tomography, X-Ray Computed/methods , Male , Female , Middle Aged , Endoscopy/methods , Models, Anatomic , Aged
4.
Adv Sci (Weinh) ; : e2403961, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38932474

ABSTRACT

The sand-dust weather and sand-dust storms have become a serious environmental disaster worldwide. It is an important challenge to develop technologies for desert sand solidification in order to prevent and control sand-dust weather. The biomineralization technology for solidifying desert sands has been a novel method for reinforced soils in recent years. The biomineralization solidification sand field tests are completed at the Wuma Highway solidification section in the Tengger Desert. The superiority of the biomineralization for solidifying sands is verified by measuring the water storage capacity of different reinforcement zones including bare sand zone, plant zone, biomineralization solidifying sand zone, and biomineralization combined plant solidifying sand zone. Simultaneously, the molecular dynamics calculation analysis is used to verify the role of biomineralization solidifying sands in preventing sand-dust storms. All results demonstrate that the biomineralization solidification sand method is effective for controlling and preventing sandstorm disasters.

5.
Adv Mater ; : e2310040, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291858

ABSTRACT

Digital Light Processing (DLP) is a vat photopolymerization-based 3D printing technology that fabricates parts typically made of chemically crosslinked polymers. The rapidly growing DLP market has an increasing demand for polymer raw materials, along with growing environmental concerns. Therefore, circular DLP printing with a closed-loop recyclable ink is of great importance for sustainability. The low-ceiling temperature alkyl-substituted δ-valerolactone (VL) is an industrially accessible biorenewable feedstock for developing recyclable polymers. In this work, acrylate-functionalized poly(δ-valerolactone) (PVLA), synthesized through the ring-opening transesterification polymerization of VL, is used as a platform photoprecursor to improve the chemical circularity in DLP printing. A small portion of photocurable reactive diluent (RD) turns the unprintable PVLA into DLP printable ink. Various photocurable monomers can serve as RDs to modulate the properties of printed structures for applications like sacrificial molds, soft actuators, sensors, etc. The intrinsic depolymerizability of PVLA is well preserved, regardless of whether the printed polymer is a thermoplastic or thermoset. The recovery yield of virgin quality VL monomer is 93% through direct bulk thermolysis of the printed structures. This work proposes the utilization of depolymerizable photoprecursors and highlights the feasibility of biorenewable VL as a versatile material platform toward circular DLP printing.

6.
Adv Mater ; 36(9): e2302066, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37120795

ABSTRACT

In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.

7.
Environ Sci Technol ; 58(1): 522-533, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38052449

ABSTRACT

Microbially induced corrosion (MIC) on concrete represents a serious issue impairing the lifespan of coastal/marine infrastructure. However, currently developed concrete corrosion protection strategies have limitations in wide applications. Here, a biomineralization method was proposed to form a biomineralized film on concrete surfaces for corrosion inhibition. Laboratory seawater corrosion experiments were conducted under different conditions [e.g., chemical corrosion (CC), MIC, and biomineralization for corrosion inhibition]. A combination of chemical and mechanical property measurements of concrete (e.g., sulfate concentrations, permeability, mass, and strength) and a genotypic-based investigation of formed concrete biofilms was conducted to evaluate the effectiveness of the biomineralization approach on corrosion inhibition. The results show that MIC resulted in much higher corrosion rates than CC. However, the biomineralization treatment effectively inhibited corrosion because the biomineralized film decreased the total and relative abundance of sulfate-reducing bacteria (SRB) and acted as a protective layer to control the diffusion of sulfate and isolate the concrete from the corrosive SRB communities, which helps extend the lifespan of concrete structures. Moreover, this technique had no negative impact on the native marine microbial communities. Our study contributes to the potential application of biomineralization for corrosion inhibition to achieve long-term sustainability for major marine concrete structures.


Subject(s)
Bacteria , Biomineralization , Corrosion , Biofilms , Sulfates
8.
Sci Total Environ ; 912: 169016, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38043825

ABSTRACT

In recent years, the application of microbially induced calcite precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) techniques have been extensively studied to mitigate soil erosion, yielding substantial achievements in this regard. This paper presents a comprehensive review of the recent progress in erosion control by MICP and EICP techniques. To further discuss the effectiveness of erosion mitigation in-depth, the estimation methods and characterization of erosion resistance were initially compiled. Moreover, factors affecting the erosion resistance of MICP/EICP-treated soil were expounded, spanning from soil properties to treatment protocols and environmental conditions. The development of optimization and upscaling in erosion mitigation via MICP/EICP was also included in this review. In addition, this review discussed the limitations and correspondingly proposed prospective applications of erosion control via the MICP/EICP approach. The current review presents up-to-date information on the research activities for improving erosion resistance by MICP/EICP, aiming at providing insights for interdisciplinary researchers and guidance for promoting this method to further applications in erosion mitigation.

9.
Nat Commun ; 14(1): 5519, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37684245

ABSTRACT

Shape-morphing structures that can reconfigure their shape to adapt to diverse tasks are highly desirable for intelligent machines in many interdisciplinary fields. Shape memory polymers are one of the most widely used stimuli-responsive materials, especially in 3D/4D printing, for fabricating shape-morphing systems. They typically go through a hot-programming step to obtain the shape-morphing capability, which possesses limited freedom of reconfigurability. Cold-programming, which directly deforms the structure into a temporary shape without increasing the temperature, is simple and more versatile but has stringent requirements on material properties. Here, we introduce grayscale digital light processing (g-DLP) based 3D printing as a simple and effective platform for fabricating shape-morphing structures with cold-programming capabilities. With the multimaterial-like printing capability of g-DLP, we develop heterogeneous hinge modules that can be cold-programmed by simply stretching at room temperature. Different configurations can be encoded during 3D printing with the variable distribution and direction of the modular-designed hinges. The hinge module allows controllable independent morphing enabled by cold programming. By leveraging the multimaterial-like printing capability, multi-shape morphing structures are presented. The g-DLP printing with cold-programming morphing strategy demonstrates enormous potential in the design and fabrication of shape-morphing structures.

10.
Adv Mater ; 35(29): e2300954, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37060583

ABSTRACT

A depolymerizable vitrimer that allows both reprocessability and monomer recovery by a simple and scalable one-pot two-step synthesis of vitrimers from cyclic lactones is reported. Biobased δ-valerolactone with alkyl substituents (δ-lactone) has low ceiling temperature; thus, their ring-opening-polymerized aliphatic polyesters are capable of depolymerizing back to monomers. In this work, the amorphous poly(δ-lactone) is solidified into an elastomer (i.e., δ-lactone vitrimer) by a vinyl ether cross-linker with dynamic acetal linkages, giving the merits of reprocessing and healing. Thermolysis of the bulk δ-lactone vitrimer at 200 °C can recover 85-90 wt% of the material, allowing reuse without losing value and achieving a successful closed-loop life cycle. It further demonstrates that the new vitrimer has excellent properties, with the potential to serve as a biobased and sustainable replacement of conventional soft elastomers for various applications such as lenses, mold materials, soft robots, and microfluidic devices.

11.
J Mech Behav Biomed Mater ; 141: 105763, 2023 05.
Article in English | MEDLINE | ID: mdl-36905706

ABSTRACT

Zinc alloy porous scaffolds are expected to be the next generation of degradable orthopedic implants attributed to their suitable degradation rate. However, a few studies have thoroughly investigated its applicable preparation method and functionality as an orthopedic implant. This study fabricated Zn-1Mg porous scaffolds with triply periodic minimal surface (TPMS) structure by a novel method combining VAT photopolymerization and casting. As-built porous scaffolds displayed fully connected pore structures with controllable topology. The manufacturability, mechanical properties, corrosion behaviors, biocompatibility, and antimicrobial performance of the bioscaffolds with pore sizes of 650 µm, 800 µm, and 1040 µm were investigated, and then compared and discussed with each other. In simulations, the mechanical behaviors of porous scaffolds exhibited the same tendency as the experiments. In addition, the mechanical properties of porous scaffolds as a function of degradation time were studied through a 90-day immersion experiment, which can provide a new option for analyzing the mechanical properties of porous scaffolds implanted in vivo. The G06 scaffold with lower pore size presented better mechanical properties before and after degradation compared with G10. The G06 scaffold with the pore size of 650 µm revealed good biocompatibility and antibacterial properties, which makes it possible to be one of the candidates for orthopedic implants.


Subject(s)
Prostheses and Implants , Zinc , Porosity , Zinc/chemistry , Tissue Scaffolds/chemistry , Alloys/chemistry
12.
Nat Commun ; 14(1): 1251, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36878943

ABSTRACT

Multimaterial additive manufacturing has important applications in various emerging fields. However, it is very challenging due to material and printing technology limitations. Here, we present a resin design strategy that can be used for single-vat single-cure grayscale digital light processing (g-DLP) 3D printing where light intensity can locally control the conversion of monomers to form from a highly stretchable soft organogel to a stiff thermoset within in a single layer of printing. The high modulus contrast and high stretchability can be realized simultaneously in a monolithic structure at a high printing speed (z-direction height 1 mm/min). We further demonstrate that the capability can enable previously unachievable or hard-to-achieve 3D printed structures for biomimetic designs, inflatable soft robots and actuators, and soft stretchable electronics. This resin design strategy thus provides a material solution in multimaterial additive manufacture for a variety of emerging applications.

13.
J Funct Biomater ; 14(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36826870

ABSTRACT

The real physiological environment of the human body is complicated, with different degrees and forms of loads applied to biomedical implants caused by the daily life of the patients, which will definitely influence the degradation behaviors of Mg-based biodegradable implants. In the present study, the degradation behaviors of modified WE43 alloys under the combination of torsional and tensile stress were systematically investigated. Slow strain rate tensile tests revealed that the simulated body fluid (SBF) solution could deteriorate the ultimate tensile stress of WE43 alloy from 210.1 MPa to 169.2 MPa. In the meantime, the fracture surface of the specimens tested in the SBF showed an intergranular corrosion morphology in the marginal region, while the central area appeared not to have been affected by the corrosive media. The bio-degradation performances under the combination of torsional and tensile stressed conditions were much more severe than those under unstressed conditions or single tensile stressed situations. The combination of 40 MPa tensile and 40 MPa torsional stress resulted in a degradation rate over 20 mm/y, which was much higher than those under 80 MPa single tensile stress (4.5 mm/y) or 80 MPa single torsional stress (13.1 mm/y). The dynamic formation and destruction mechanism of the protective corrosion products film on the modified WE43 alloy could attribute to the exacerbated degradation performance and the unique corrosion morphology. The dynamic environment and multi-directional loading could severely accelerate the degradation process of modified WE43 alloy. Therefore, the SCC susceptibility derived from a single directional test may be not suitable for practical purposes. Complex external stress was necessary to simulate the in vivo environment for the development of biodegradable Mg-based implants for clinical applications.

14.
Adv Mater ; 34(39): e2204890, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35962737

ABSTRACT

Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on-the-fly by using laser-assisted DIW with an actuation strain up to -40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one-step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW-printed functionally freestanding LCEs with the DLP-printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices.

15.
Biomater Adv ; 134: 112722, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35584980

ABSTRACT

Metal matrix composites have been recognized as a feasible approach to obtain a new generation of biodegradable Zn-based material. Nevertheless, there is a great challenge in achieving good dispersion properties of the bioactive reinforcements within zinc matrix. A novel and facile approach, namely graphene oxide (GO)-assisted hetero-aggregation, were developed to achieve uniformly dispersed nanoceramics in the Zn matrix, by using very low-content (0.03 vol%) GO as a linker between the Zn matrix and reinforcement. The negatively-charged GO becomes a suitable "bridge" connected the positively-charged metallic powder and bioactive reinforcement by charge neutralization in polarity solvent. Three kinds of reinforcements, including MgO, ZnO and CuO, were used to verify the feasibility of the above-mentioned method. As-sintered 3CuO/Zn matrix composites, which possessed uniformly distributed reinforcement, uniaxial compressive strength of 301.2 MPa, failure strain over 40%, moderate corrosion rate of 0.063 mm·y-1, acceptable cytocompatibility and antibacterial property, should be a useful material for orthopedic applications.


Subject(s)
Zinc Oxide , Copper , Graphite , Magnesium Oxide , Materials Testing , Zinc
16.
ACS Omega ; 7(7): 6302-6312, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35224392

ABSTRACT

The selective action mechanism of sodium butyl xanthate (BX), ammonium salt (NH4 +), and sodium m-nitrobenzoate (m-NBO) on pyrite and arsenopyrite was examined by experiments and quantum chemistry. The experiments show that under alkaline conditions, ammonium salt (NH4 +) and m-NBO can have a strong inhibitory effect on arsenopyrite. At pH 11, the recovery rate of arsenopyrite reduces to 16%. The presence of ammonium salt (NH4 +) and m-NBO reduces the adsorption energy of BX on arsenopyrite to ΔE = -23.23 kJ/mol, which is far less than the adsorption energy on the surface of pyrite, ΔE = -110.13 kJ/mol. The results are helpful to understand the synergistic mechanism of the agent on the surface of arsenopyrite and pyrite, thus providing a reference for the selective separation of arsenopyrite.

17.
Environ Sci Pollut Res Int ; 29(11): 16762-16771, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35041172

ABSTRACT

The enzymatically induced carbonate precipitation (EICP) technique is currently studied for dust control because of the formation of cemented crust layer. In the present study, polyvinyl acetate (PVAc) was used with EICP together as the EICP-PVAc treatment to solidify dust soils. In addition, several treated dust soil areas always experience repeated freeze-thaw (FT) or dry-wet (DW) cycles, both of which result in the damage of structure. Therefore, the FT cycle test and the DW cycle test were conducted to study the durability of EICP-PVAc treatment. Results showed that both FT cycles and DW cycles affected the EICP-PVAc-treated dust soils. The wind-erosion resistance and rainfall-erosion resistance were impaired, and the surface strength decreased. However, the decreasing range resulted from the FT cycle was smaller than the decreasing range resulted from the DW cycle. It indicated the EICP-PVAc-treated dust soils had better FT durability, but the DW durability was worse. Moreover, a field test was used to study the durability of application of EICP-PVAc treatment in practical field test site. Based on the surface pattern observation after 9 months, the grasses in the treated area are in good growth condition; however, few grasses grew in the untreated area. The field test demonstrated that the combined EICP-PVAc and grass seeds treatment can ensure the long-term solidification effect and durability. The results lay a solid foundation for the applications of EICP-PVAc treatment to solidify dust soils for dust control.


Subject(s)
Dust , Soil , Freezing , Poaceae , Wind
18.
Cytometry A ; 101(5): 434-447, 2022 05.
Article in English | MEDLINE | ID: mdl-34821462

ABSTRACT

This paper reported a microfluidic platform which realized the characterization of inherent single-cell biomechanical and bioelectrical parameters simultaneously. Individual cells traveled through a constriction channel with deformation images and impedance variations captured and processed into cortical tension Tc , specific membrane capacitance Csm , and cytoplasmic conductivity σcy based on an equivalent biophysical model. These properties of thousands of individual cells of K562, Jurkat, HL-60, HL-60 treated with paraformaldehyde (PA)/cytochalasin D (CD)/concanavalin A (ConA), granulocytes of Donor 1, Donor 2, and Donor 3 were quantified for the first time. Leveraging Tc , Csm , and σcy , (1) high accuracies of classifying wild-type and processed HL-60 cells (e.g., 93.5% of PA treated vs. CD treated HL-60 cells) were realized, revealing the effectiveness of using these three biophysical parameters in cell-type classification; (2) low accuracies of classifying normal granulocytes from three donors (e.g., 56.4% of Donor 1 vs. 2), indicating comparable parameters for normal granulocytes. In conclusion, this platform can characterize single-cell Tc , Csm , and σcy concurrently and quantify multiple parameters in single-cell analysis.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Cell Membrane , Constriction , Cytoplasm , Electric Capacitance , Electric Impedance , Humans , Microfluidic Analytical Techniques/methods , Microfluidics/methods
19.
J Environ Manage ; 301: 113883, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34601348

ABSTRACT

Microbially induced calcite precipitation (MICP) has been shown to mitigate sand erosion; however, few studies have applied MICP on loess soils. In this study, polyacrylamide (PAM) was added to the cementation solution, and combined MICP-PAM treatment was applied to improve the surface erosion resistance of loess-slopes. The freeze-thaw (FT) durability of MICP-PAM treated loess slopes was also studied. The obtained results showed that MICP-PAM treatment improved erosion resistance and addition of 1.5 g/L PAM achieved the best erosion control and highest surface strength. The high erosion resistance of MICP-PAM treated slopes could be attributed to the stable spatial structure of precipitation, and PAM addition conveyed stronger resistance to tension or shear force. With increasing number of FT cycles, the surface strength of MICP-PAM treated loess slopes decreased; however, slopes subjected to 12 FT cycles still only lost little soil. In MICP-PAM treated loess slopes, cracks and pores evolved with increasing number of FT cycles. With increasing number of FT cycles, porosity and fractal dimension increased, pore ellipticity decreased slightly, and the percentage of various pores changed slightly. The number of FT cycles had less effect on MICP-PAM treated loess slopes than on untreated slopes. MICP-PAM treatment significantly mitigated surface erosion of loess-slopes and improved FT weathering resistance, thus presenting promising potential for application in the field. In addition, based on the linear correlations between surface strength and rainfall-erosion resistance, surface strength could be measured to evaluate the rainfall-erosion resistance for MICP-PAM treated slopes in practical engineering applications.


Subject(s)
Polymers , Soil , Calcium Carbonate
20.
Mater Sci Eng C Mater Biol Appl ; 130: 112431, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34702516

ABSTRACT

The development of biodegradable Zn matrix composites has been considered a promising approach to achieving enhanced mechanical properties, controllable degradation rate, good biocompatibility, and good osseointegration as orthopedic implants. However, scant literature regarding Zn matrix composites has been reported because of the great difficulty in dispersing the nano-sized bioactive reinforcements uniformly within the Zn matrix. In the present study, a novel and effective method were employed to obtain Zn matrix composites reinforced by uniformly dispersed beta-tricalcium phosphate (ß-TCP) via graphene oxide (GO)-assisted hetero-agglomeration and subsequent spark plasma sintering process. A very low-content (0.04 vol%) few-layered GO was used as a coupling reagent to connect the Zn matrix and nano-sized TCP particles. In an appropriate polarity solvent, the negatively charged GO sheets could combine with both the positively charged Zn powder and TCP particles by electrostatic attraction and charge neutralization. Due to the nature of hetero-agglomeration, the flexible GO sheet could adhere to the large Zn powder and attracted a certain amount of TCP particles to form a Zn/GO/TCP sandwich structure by charge neutralization thereby forming a uniform dispersion of TCP particles within Zn matrix. After the spark plasma sintering (SPS) process, the TCP particles incorporated with very thin ZnO layers (thickness of a few dozen nanometers) formed a homogeneous and unique 3D network-like distribution in as-sintered TCP/Zn composites. A unique "snap pea"-like structure was confirmed at the grain boundary of α-Zn grains, which consisted of the TCP particles as "pea" and thin ZnO layer as "pod". Due to the uniform dispersion of bioactive TCP particles and unique structure of the TCP incorporating grain boundary, as-sintered 3TCP/Zn matrix composites possessed yield strength (YS) of 140.8 ± 7.7 MPa, failure strain of 36.0 ± 2.8%, the moderate degradation rate of 19.1 ± 3.3 µm·y-1 and good cytocompatibility to MC3T3-E1 cells. Moreover, osteogenic differentiation activity evaluation revealed that the addition of TCP could significantly improve the expressions of the osteogenic differentiation-related gene (ALP) in MC3T3-E1 cells, thereby resulting in improved osteogenic capability. Therefore, biodegradable 3TCP/Zn matrix composites fabricated by GO-assisted hetero-agglomeration and subsequent SPS process could be a promising material as orthopedic implants.


Subject(s)
Osteogenesis , Zinc , Calcium Phosphates , Graphite , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL