Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(30): eadk9878, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39047106

ABSTRACT

Cisplatin is a widely used anticancer drug with notable side effects including ototoxicity and nephrotoxicity. Macrophages, the major resident immune cells in the cochlea and kidney, are important drivers of both inflammatory and tissue repair responses. To investigate the roles of macrophages in cisplatin-induced toxicities, we used PLX3397, a U.S. Food and Drug Administration-approved inhibitor of the colony-stimulating factor 1 receptor, to eliminate tissue-resident macrophages. Mice treated with cisplatin alone had considerable hearing loss (ototoxicity) and kidney injury (nephrotoxicity). Macrophage ablation resulted in significantly reduced hearing loss and had greater outer hair cell survival. Macrophage ablation also protected against cisplatin-induced nephrotoxicity, as evidenced by markedly reduced tubular injury and fibrosis. Mechanistically, our data suggest that the protective effect of macrophage ablation against cisplatin-induced ototoxicity and nephrotoxicity is mediated by reduced platinum accumulation in both the inner ear and the kidney. Together, our data indicate that ablation of tissue-resident macrophages represents an important strategy for mitigating cisplatin-induced ototoxicity and nephrotoxicity.


Subject(s)
Cisplatin , Macrophages , Ototoxicity , Cisplatin/adverse effects , Cisplatin/toxicity , Animals , Macrophages/drug effects , Macrophages/metabolism , Ototoxicity/etiology , Ototoxicity/prevention & control , Mice , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Hearing Loss/chemically induced , Hearing Loss/prevention & control , Antineoplastic Agents/adverse effects , Antineoplastic Agents/toxicity , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Cochlea/drug effects , Cochlea/metabolism , Cochlea/pathology , Mice, Inbred C57BL , Aminopyridines , Pyrroles
2.
JCI Insight ; 9(11)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855871

ABSTRACT

Human cytomegalovirus (HCMV) infection in infants infected in utero can lead to a variety of neurodevelopmental disorders. However, mechanisms underlying altered neurodevelopment in infected infants remain poorly understood. We have previously described a murine model of congenital HCMV infection in which murine CMV (MCMV) spreads hematogenously and establishes a focal infection in all regions of the brain of newborn mice, including the cerebellum. Infection resulted in disruption of cerebellar cortical development characterized by reduced cerebellar size and foliation. This disruption was associated with altered cell cycle progression of the granule cell precursors (GCPs), which are the progenitors that give rise to granule cells (GCs), the most abundant neurons in the cerebellum. In the current study, we have demonstrated that MCMV infection leads to prolonged GCP cell cycle, premature exit from the cell cycle, and reduced numbers of GCs resulting in cerebellar hypoplasia. Treatment with TNF-α neutralizing antibody partially normalized the cell cycle alterations of GCPs and altered cerebellar morphogenesis induced by MCMV infection. Collectively, our results argue that virus-induced inflammation altered the cell cycle of GCPs resulting in a reduced numbers of GCs and cerebellar cortical hypoplasia, thus providing a potential mechanism for altered neurodevelopment in fetuses infected with HCMV.


Subject(s)
Cell Cycle , Cerebellum , Cytomegalovirus Infections , Disease Models, Animal , Animals , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/pathology , Mice , Cerebellum/virology , Cerebellum/pathology , Cerebellum/growth & development , Cerebellum/abnormalities , Female , Cytomegalovirus , Neural Stem Cells/virology , Muromegalovirus/physiology , Animals, Newborn , Humans , Neurons/virology , Tumor Necrosis Factor-alpha/metabolism , Developmental Disabilities , Nervous System Malformations
3.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014097

ABSTRACT

Cisplatin is a widely used and highly effective anti-cancer drug with significant side effects including ototoxicity and nephrotoxicity. Macrophages, the major resident immune cells in the cochlea and kidney, are important drivers of both inflammatory and tissue repair responses. To investigate the roles of macrophages in cisplatin-induced ototoxicity and nephrotoxicity, we used PLX3397, an FDA-approved inhibitor of the colony-stimulating factor 1 receptor (CSF1R), to eliminate tissue-resident macrophages during the course of cisplatin administration. Mice treated with cisplatin alone (cisplatin/vehicle) had significant hearing loss (ototoxicity) as well as kidney injury (nephrotoxicity). Macrophage ablation using PLX3397 resulted in significantly reduced hearing loss measured by auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE). Sensory hair cells in the cochlea were protected against cisplatin-induced death in mice treated with PLX3397. Macrophage ablation also protected against cisplatin-induced nephrotoxicity, as evidenced by markedly reduced tubular injury and fibrosis as well as reduced plasma blood urea nitrogen (BUN) and neutrophil gelatinase-associated lipocalin (NGAL) levels. Mechanistically, our data suggest that the protective effect of macrophage ablation against cisplatin-induced ototoxicity and nephrotoxicity is mediated by reduced platinum accumulation in both the inner ear and the kidney. Together our data indicate that ablation of tissue-resident macrophages represents a novel strategy for mitigating cisplatin-induced ototoxicity and nephrotoxicity.

4.
Hear Res ; 432: 108735, 2023 05.
Article in English | MEDLINE | ID: mdl-36965335

ABSTRACT

Adeno-associated virus (AAV)-mediated inner ear gene therapy is a promising treatment option for hearing loss and dizziness. Several studies have shown that AAV-mediated inner ear gene therapy can be applied to various mouse models of hereditary hearing loss to improve their auditory function. Despite the increase in AAV-based animal and clinical studies aiming to rescue auditory and vestibular functions, little is currently known about the host immune responses to AAV in the mammalian inner ear. It has been reported that the host immune response plays an important role in the safety and efficacy of viral-mediated gene therapy. Therefore, in order for AAV-mediated gene therapy to be successfully and safely translated into patients with hearing loss and dizziness, a better understanding of the host immune responses to AAV in the inner ear is critical. In this review, we summarize the current knowledge on host immune responses to AAV-mediated gene therapy in the mammalian inner ear and other organ systems. We also outline the areas of research that are critical for ensuring the safety and efficacy of AAV-mediated inner ear gene therapy in future clinical and translational studies.


Subject(s)
Ear, Inner , Hearing Loss , Animals , Mice , Dependovirus/genetics , Gene Transfer Techniques , Dizziness/therapy , Genetic Vectors , Genetic Therapy , Hearing Loss/genetics , Mammals/genetics
5.
Hear Res ; 416: 108429, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35081508

ABSTRACT

The mouse utricle model system is the best-characterized ex vivo preparation for studies of mature mammalian hair cells (HCs). Despite the many advantages of this model system, efficient and reliable quantification of HCs from cultured utricles has been a persistent challenge with this model system. Utricular HCs are commonly quantified by counting immunolabeled HCs in regions of interest (ROIs) placed over an image of the utricle. Our data indicate that the accuracy of HC counts obtained using this method can be impacted by variability in HC density across different regions of the utricle. In addition, the commonly used HC marker myosin 7a results in a diffuse cytoplasmic stain that is not conducive to automated quantification and must be quantified manually, a labor-intensive task. Furthermore, myosin 7a immunoreactivity is retained in dead HCs, resulting in inaccurate quantification of live HCs using this marker. Here we have developed a method for semi-automated quantification of surviving HCs that combines immunoreactivity for the HC-specific transcription factor Pou4f3 with labeling of activated caspase 3/7 (AC3/7) to detect apoptotic HCs. The discrete nuclear Pou4f3 signal allowed us to utilize the binary or threshold function within ImageJ to automate HC quantification. To further streamline this process, we created an ImageJ macro that automates the process from raw image loading to a final quantified image that can be immediately evaluated for accuracy. Within this quantified image, the user can manually correct the quantification via an image overlay indicating the counted HC nuclei. Pou4f3-positive HCs that also express AC3/7 are subtracted to yield accurate counts of surviving HCs. Overall, we present a semi-automated method that is faster than manual HC quantification and identifies surviving HCs with high accuracy.


Subject(s)
Hair Cells, Auditory , Saccule and Utricle , Animals , Gene Expression Regulation , Hair , Mice , Transcription Factors
6.
Pathogens ; 10(8)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34451526

ABSTRACT

Human cytomegalovirus infection of the developing fetus is a leading cause of neurodevelopmental disorders in infants and children, leading to long-term neurological sequela in a significant number of infected children. Current understanding of the neuropathogenesis of this intrauterine infection is limited because of the complexity of this infection, which includes maternal immunological responses that are overlaid on virus replication in the CNS during neurodevelopment. Furthermore, available data from human cases are observational, and tissues from autopsy studies have been derived from only the most severe infections. Animal models of this human infection are also limited by the strict species specificity of cytomegaloviruses. However, informative models including non-human primates and small animal models have been developed. These include several different murine models of congenital HCMV infection for the study of CMV neuropathogenesis. Although individual murine models do not completely recapitulate all aspects of the human infection, each model has provided significant information that has extended current understanding of the neuropathogenesis of this human infection. This review will compare and contrast different murine models in the context of available information from human studies of CNS disease following congenital HCMV infections.

7.
JCI Insight ; 4(17)2019 09 05.
Article in English | MEDLINE | ID: mdl-31484824

ABSTRACT

Although human cytomegalovirus (HCMV) is a known cause of sensorineural hearing loss in infants with congenital HCMV (cCMV) infections, mechanisms that contribute to sensorineural hearing loss (SNHL) in infants with cCMV infection are not well defined. Using a murine model of CMV infection during auditory development, we have shown that peripheral infection of newborn mice with murine CMV (MCMV) results in focal infection of the cochlea and virus-induced cochlear inflammation. Approximately 50%-60% of infected mice exhibited increased auditory brainstem response (ABR) thresholds across a range of sound frequencies. Histological analyses of the cochlea in MCMV-infected mice with elevated ABR thresholds revealed preservation of hair cell (HC) number and morphology in the organ of Corti. In contrast, the number of spiral ganglion neurons (SGN), synapses, and neurites connecting the cochlear HC and SGN nerve terminals were decreased. Decreasing cochlear inflammation by corticosteroid treatment of MCMV-infected mice resulted in preservation of SGN and improved auditory function. These findings show that virus-induced cochlear inflammation during early auditory development, rather than direct virus-mediated damage, could contribute to histopathology in the cochlea and altered auditory function without significant loss of HCs in the sensory epithelium.


Subject(s)
Cochlea/immunology , Hearing Loss, Sensorineural/immunology , Hearing/physiology , Inflammation , Virus Activation , Animals , Animals, Newborn , Cochlea/pathology , Cochlea/virology , Cytomegalovirus/genetics , Cytomegalovirus Infections/pathology , Cytomegalovirus Infections/virology , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem , Female , Hair Cells, Auditory/pathology , Hearing Loss, Sensorineural/pathology , Hearing Loss, Sensorineural/virology , Inflammation/immunology , Inflammation/pathology , Male , Mice , Mice, Inbred BALB C , Neurons/pathology , Organ of Corti/pathology , Spiral Ganglion/pathology , Synapses , Virus Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL