Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Lancet Glob Health ; 12(6): e1017-e1026, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762282

ABSTRACT

BACKGROUND: Post-exposure prophylaxis (PEP) using single-dose rifampicin reduces progression from infection with Mycobacterium leprae to leprosy disease. We compared effectiveness of different administration modalities, using a higher (20 mg/kg) dose of rifampicin-single double-dose rifampicin (SDDR)-PEP. METHODS: We did a cluster randomised study in 16 villages in Madagascar and 48 villages in Comoros. Villages were randomly assigned to four study arms and inhabitants were screened once a year for leprosy, for 4 consecutive years. All permanent residents (no age restriction) were eligible to participate and all identified patients with leprosy were treated with multidrug therapy (SDDR-PEP was provided to asymptomatic contacts aged ≥2 years). Arm 1 was the comparator arm, in which no PEP was provided. In arm 2, SDDR-PEP was provided to household contacts of patients with leprosy, whereas arm 3 extended SDDR-PEP to anyone living within 100 m. In arm 4, SDDR-PEP was offered to household contacts and to anyone living within 100 m and testing positive to anti-phenolic glycolipid-I. The main outcome was the incidence rate ratio (IRR) of leprosy between the comparator arm and each of the intervention arms. We also assessed the individual protective effect of SDDR-PEP and explored spatial associations. This trial is registered with ClinicalTrials.gov, NCT03662022, and is completed. FINDINGS: Between Jan 11, 2019, and Jan 16, 2023, we enrolled 109 436 individuals, of whom 95 762 had evaluable follow-up data. Our primary analysis showed a non-significant reduction in leprosy incidence in arm 2 (IRR 0·95), arm 3 (IRR 0·80), and arm 4 (IRR 0·58). After controlling for baseline prevalence, the reduction in arm 3 became stronger and significant (IRR 0·56, p=0·0030). At an individual level SDDR-PEP was also protective with an IRR of 0·55 (p=0·0050). Risk of leprosy was two to four times higher for those living within 75 m of an index patient at baseline. INTERPRETATION: SDDR-PEP appears to protect against leprosy but less than anticipated. Strong spatial associations were observed within 75 m of index patients. Targeted door-to-door screening around index patients complemented by a blanket SDDR-PEP approach will probably have a substantial effect on transmission. FUNDING: European and Developing Countries Clinical Trials Partnership. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
Leprostatic Agents , Leprosy , Post-Exposure Prophylaxis , Rifampin , Humans , Leprosy/prevention & control , Leprosy/drug therapy , Leprosy/epidemiology , Male , Female , Adult , Rifampin/administration & dosage , Rifampin/therapeutic use , Leprostatic Agents/therapeutic use , Leprostatic Agents/administration & dosage , Post-Exposure Prophylaxis/methods , Middle Aged , Adolescent , Young Adult , Madagascar/epidemiology , Child , Cluster Analysis , Incidence , Mycobacterium leprae
2.
Diagn Microbiol Infect Dis ; 109(2): 116249, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537504

ABSTRACT

Targeted Next Generation Sequencing (tNGS) and Whole Genome Sequencing (WGS) are increasingly used for genotypic drug susceptibility testing (gDST) of Mycobacterium tuberculosis. Thirty-two multi-drugs resistant and 40 drug susceptible isolates from Madagascar were tested with Deeplex® Myc-TB and WGS using the Mykrobe analysis pipeline. Sixty-four of 72 (89 %) yielded concordant categorical gDST results for drugs tested by both assays. Mykrobe didn't detect pncA K96T, pncA Q141P, pncA H51P, pncA H82R, rrs C517T and rpsL K43R mutations, which were identified as minority variants in corresponding isolates by tNGS. One discrepancy (rrs C517T) was associated with insufficient sequencing depth on WGS. Deeplex® Myc-TB didn't detect inhA G-154A which isn't covered by the assay's amplification targets. Despite those targets being included in the Deeplex® Myc-TB assay, a pncA T47A and a deletion in gid were not identified in one isolate respectively. The evaluated WGS and tNGS gDST assays show high but imperfect concordance.


Subject(s)
Antitubercular Agents , Genotype , High-Throughput Nucleotide Sequencing , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Whole Genome Sequencing , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Microbial Sensitivity Tests/methods , Humans , High-Throughput Nucleotide Sequencing/methods , Tuberculosis, Multidrug-Resistant/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Madagascar , Genome, Bacterial/genetics , Mutation , Bacterial Proteins/genetics , Genotyping Techniques/methods
3.
Emerg Infect Dis ; 30(3): 560-563, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38407162

ABSTRACT

Analysis of genome sequencing data from >100,000 genomes of Mycobacterium tuberculosis complex using TB-Annotator software revealed a previously unknown lineage, proposed name L10, in central Africa. Phylogenetic reconstruction suggests L10 could represent a missing link in the evolutionary and geographic migration histories of M. africanum.


Subject(s)
Biological Evolution , Mycobacterium , Phylogeny , Mycobacterium/genetics , Software , Africa, Central/epidemiology
4.
Nat Commun ; 14(1): 7519, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980337

ABSTRACT

The Mycobacterium tuberculosis complex (MTBC) includes several human- and animal-adapted pathogens. It is thought to have originated in East Africa from a recombinogenic Mycobacterium canettii-like ancestral pool. Here, we describe the discovery of a clinical tuberculosis strain isolated in Ethiopia that shares archetypal phenotypic and genomic features of M. canettii strains, but represents a phylogenetic branch much closer to the MTBC clade than to the M. canettii strains. Analysis of genomic traces of horizontal gene transfer in this isolate and previously identified M. canettii strains indicates a persistent albeit decreased recombinogenic lifestyle near the emergence of the MTBC. Our findings support that the MTBC emergence from its putative free-living M. canettii-like progenitor is evolutionarily very recent, and suggest the existence of a continuum of further extant derivatives from ancestral stages, close to the root of the MTBC, along the Great Rift Valley.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Phylogeny , Ethiopia , Tuberculosis/microbiology , Africa, Eastern
5.
EBioMedicine ; 93: 104649, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37327675

ABSTRACT

BACKGROUND: Expansion of antimicrobial resistance monitoring and epidemiological surveillance are key components of the WHO strategy towards zero leprosy. The inability to grow Mycobacterium leprae in vitro precludes routine phenotypic drug susceptibility testing, and only limited molecular tests are available. We evaluated a culture-free targeted deep sequencing assay, for mycobacterial identification, genotyping based on 18 canonical SNPs and 11 core variable-number tandem-repeat (VNTR) markers, and detection of rifampicin, dapsone and fluoroquinolone resistance-associated mutations in rpoB/ctpC/ctpI, folP1, gyrA/gyrB, respectively, and hypermutation-associated mutations in nth. METHODS: The limit of detection (LOD) was determined using DNA of M. leprae reference strains and from 246 skin biopsies and 74 slit skin smears of leprosy patients, with genome copies quantified by RLEP qPCR. Sequencing results were evaluated versus whole genome sequencing (WGS) data of 14 strains, and versus VNTR-fragment length analysis (FLA) results of 89 clinical specimens. FINDINGS: The LOD for sequencing success ranged between 80 and 3000 genome copies, depending on the sample type. The LOD for minority variants was 10%. All SNPs detected in targets by WGS were identified except in a clinical sample where WGS revealed two dapsone resistance-conferring mutations instead of one by Deeplex Myc-Lep, due to partial duplication of the sulfamide-binding domain in folP1. SNPs detected uniquely by Deeplex Myc-Lep were missed by WGS due to insufficient coverage. Concordance with VNTR-FLA results was 99.4% (926/932 alleles). INTERPRETATION: Deeplex Myc-Lep may help improve the diagnosis and surveillance of leprosy. Gene domain duplication is an original putative drug resistance-related genetic adaptation in M. leprae. FUNDING: EDCTP2 programme supported by the European Union (grant number RIA2017NIM-1847 -PEOPLE). EDCTP, R2Stop: Effect:Hope, The Mission To End Leprosy, the Flemish Fonds Wetenschappelijk Onderzoek.


Subject(s)
Leprosy , Mycobacterium tuberculosis , Humans , Mycobacterium leprae/genetics , Microbial Sensitivity Tests , Genotype , Drug Resistance, Bacterial/genetics , Leprosy/diagnosis , Leprosy/drug therapy , Leprosy/epidemiology , Dapsone , Biopsy , Drug Resistance, Multiple
6.
PLOS Glob Public Health ; 3(3): e0001754, 2023.
Article in English | MEDLINE | ID: mdl-37000774

ABSTRACT

There were approximately 10 million tuberculosis (TB) cases in 2020, of which 500,000 were drug-resistant. Only one third of drug-resistant TB cases were diagnosed and enrolled on appropriate treatment, an issue partly driven by a lack of rapid, accurate drug-susceptibility testing (DST) tools deployable in peripheral settings. In 2014, World Health Organization (WHO) published target product profiles (TPPs) which detailed minimal and optimal criteria to address high-priority TB diagnostic needs, including DST. Since then, the TB community's needs have evolved; new treatment regimens, changes in TB definitions, further emergence of drug resistance, technological advances, and changing end-users requirements have necessitated an update. The DST TPP's revision was therefore undertaken by WHO with the Stop TB Partnership New Diagnostics Working Group. We describe the process of updating the TPP for next-generation TB DST for use at peripheral centres, highlight key updates, and discuss guidance regarding technical and operational specifications.

7.
Nat Commun ; 13(1): 5105, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042200

ABSTRACT

Transmission-driven multi-/extensively drug resistant (M/XDR) tuberculosis (TB) is the largest single contributor to human mortality due to antimicrobial resistance. A few major clades of the Mycobacterium tuberculosis complex belonging to lineage 2, responsible for high prevalence of MDR-TB in Eurasia, show outstanding transnational distributions. Here, we determined factors underlying the emergence and epidemic spread of the W148 clade by genome sequencing and Bayesian demogenetic analyses of 720 isolates from 23 countries. We dated a common ancestor around 1963 and identified two successive epidemic expansions in the late 1980s and late 1990s, coinciding with major socio-economic changes in the post-Soviet Era. These population expansions favored accumulation of resistance mutations to up to 11 anti-TB drugs, with MDR evolving toward additional resistances to fluoroquinolones and second-line injectable drugs within 20 years on average. Timescaled haplotypic density analysis revealed that widespread acquisition of compensatory mutations was associated with transmission success of XDR strains. Virtually all W148 strains harbored a hypervirulence-associated ppe38 gene locus, and incipient recurrent emergence of prpR mutation-mediated drug tolerance was detected. The outstanding genetic arsenal of this geographically widespread M/XDR strain clade represents a "perfect storm" that jeopardizes the successful introduction of new anti-M/XDR-TB antibiotic regimens.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Bayes Theorem , Drug Resistance, Multiple, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Humans , Microbial Sensitivity Tests , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology
9.
Lancet Microbe ; 3(9): e693-e700, 2022 09.
Article in English | MEDLINE | ID: mdl-35850123

ABSTRACT

BACKGROUND: Despite strong leprosy control measures, including effective treatment, leprosy persists in the Comoros. As of May, 2022, no resistance to anti-leprosy drugs had been reported, but there are no nationally representative data. Post-exposure prophylaxis (PEP) with rifampicin is offered to contacts of patients with leprosy. We aimed to conduct a countrywide drug resistance survey and investigate whether PEP led to the emergence of drug resistance in patients with leprosy. METHODS: In this observational, deep-sequencing analysis we assessed Mycobacterium leprae genomes from skin biopsies of patients in Anjouan and Mohéli, Comoros, collected as part of the ComLep (NCT03526718) and PEOPLE (NCT03662022) studies. Skin biopsies that had sufficient M leprae DNA (>2000 bacilli in 2 µl of DNA extract) were assessed for the presence of seven drug resistance-associated genes (ie, rpoB, ctpC, ctpI, folP1, gyrA, gyrB, and nth) using Deeplex Myc-Lep (targeted next generation deep sequencing), with a limit of detection of 10% for minority M leprae bacterial populations bearing a polymorphism in these genes. All newly registered patients with leprosy for whom written informed consent was obtained were eligible for inclusion in the survey. Patients younger than 2 years or with a single lesion on the face did not have biopsies taken. The primary outcome of our study was the proportion of patients with leprosy (ie, new cases, patients with relapses or reinfections, patients who received single (double) dose rifampicin-PEP, or patients who lived in villages where PEP was distributed) who were infected with M leprae with a drug-resistant mutation for rifampicin, fluoroquinolone, or dapsone in the Comoros. FINDINGS: Between July 1, 2017, and Dec 31, 2020, 1199 patients with leprosy were identified on the basis of clinical criteria, of whom 1030 provided a skin biopsy. Of these 1030 patients, 755 (73·3%) tested positive for the M leprae-specific repetitive element-quantitative PCR (qPCR) assay. Of these 755 patients, 260 (34·4%) were eligible to be analysed using Deeplex Myc-Lep. 251 (96·5%) were newly diagnosed with leprosy, whereas nine (3·4%) patients had previously received multidrug therapy. 45 (17·3%) patients resided in villages where PEP had been administered in 2015 or 2019, two (4·4%) of whom received PEP. All seven drug resistance-associated targets were successfully sequenced in 216 samples, 39 samples had incomplete results, and five had no results. No mutations were detected in any of the seven drug resistance-related genes for any patient with successfully sequenced results. INTERPRETATION: This drug resistance survey provides evidence to show that M leprae is fully susceptible to rifampicin, fluoroquinolones, and dapsone in the Comoros. Our results also show, for the first time, the applicability of targeted sequencing directly on skin biopsies from patients with either paucibacillary or multibacillary leprosy. These data suggest that PEP had not selected rifampicin-resistant strains, although further support for this finding should be confirmed with a larger sample size. FUNDING: Effect:Hope, The Mission To End Leprosy, the Fonds Wetenschappelijk Onderzoek, the EU.


Subject(s)
Leprosy , Mycobacterium leprae , Comoros , Dapsone/pharmacology , Drug Resistance, Bacterial/genetics , Drug Therapy, Combination , Humans , Leprostatic Agents/pharmacology , Leprosy/drug therapy , Mycobacterium leprae/genetics , Rifampin/pharmacology
10.
Genes (Basel) ; 13(6)2022 05 31.
Article in English | MEDLINE | ID: mdl-35741753

ABSTRACT

Mycobacterium tuberculosis complex (MTBC) Lineage 3 (L3) strains are abundant in world regions with the highest tuberculosis burden. To investigate the population structure and the global diversity of this major lineage, we analyzed a dataset comprising 2682 L3 strains from 38 countries over 5 continents, by employing 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats genotyping (MIRU-VNTR) and drug susceptibility testing. We further combined whole-genome sequencing (WGS) and phylogeographic analysis for 373 strains representing the global L3 genetic diversity. Ancestral state reconstruction confirmed that the origin of L3 strains is located in Southern Asia and further revealed multiple independent introduction events into North-East and East Africa. This study provides a systematic understanding of the global diversity of L3 strains and reports phylogenetic variations that could inform clinical trials which evaluate the effectivity of new drugs/regimens or vaccine candidates.


Subject(s)
Mycobacterium tuberculosis , Genotype , Microbial Sensitivity Tests , Minisatellite Repeats , Mycobacterium tuberculosis/genetics , Phylogeny
11.
Nat Microbiol ; 6(8): 1082-1093, 2021 08.
Article in English | MEDLINE | ID: mdl-34294904

ABSTRACT

Pathogenomic evidence suggests that Mycobacterium tuberculosis (MTB) evolved from an environmental ancestor similar to Mycobacterium canettii, a rare human pathogen. Although the adaptations responsible for this transition are poorly characterized, the ability to persist in humans seems to be important. We set out to identify the adaptations contributing to the evolution of persistence in MTB. We performed an experimental evolution of eight M. canettii populations in mice; four populations were derived from the isolate STB-K (phylogenomically furthest from MTB) and four from STB-D (closest to MTB), which were monitored for 15 and 6 cycles, respectively. We selected M. canettii mutants with enhanced persistence in vivo compared with the parental strains, which were phenotypically closer to MTB. Genome sequencing of 140 mutants and complementation analysis revealed that mutations in two loci were responsible for enhanced persistence. Most of the tested mutants were more resistant than their parental strains to nitric oxide, an important effector of immunity. Modern MTB were similarly more resistant to nitric oxide than M. canettii. Our findings demonstrate phenotypic convergence during experimental evolution of M. canettii, which mirrors natural evolution of MTB. Furthermore, they indicate that the ability to withstand host-induced stresses was key for the emergence of persistent MTB.


Subject(s)
Biological Evolution , Mycobacterium tuberculosis/physiology , Mycobacterium/physiology , Animals , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mutation , Mycobacterium/genetics , Mycobacterium tuberculosis/genetics , Stress, Physiological , Tuberculosis/microbiology
12.
Eur Respir J ; 57(3)2021 03.
Article in English | MEDLINE | ID: mdl-32943401

ABSTRACT

Conventional molecular tests for detecting Mycobacterium tuberculosis complex (MTBC) drug resistance on clinical samples cover a limited set of mutations. Whole-genome sequencing (WGS) typically requires culture.Here, we evaluated the Deeplex Myc-TB targeted deep-sequencing assay for prediction of resistance to 13 anti-tuberculous drugs/drug classes, directly applicable on sputum.With MTBC DNA tests, the limit of detection was 100-1000 genome copies for fixed resistance mutations. Deeplex Myc-TB captured in silico 97.1-99.3% of resistance phenotypes correctly predicted by WGS from 3651 MTBC genomes. On 429 isolates, the assay predicted 92.2% of 2369 first- and second-line phenotypes, with a sensitivity of 95.3% and a specificity of 97.4%. 56 out of 69 (81.2%) residual discrepancies with phenotypic results involved pyrazinamide, ethambutol and ethionamide, and low-level rifampicin or isoniazid resistance mutations, all notoriously prone to phenotypic testing variability. Only two out of 91 (2.2%) resistance phenotypes undetected by Deeplex Myc-TB had known resistance-associated mutations by WGS analysis outside Deeplex Myc-TB targets. Phenotype predictions from Deeplex Myc-TB analysis directly on 109 sputa from a Djibouti survey matched those of MTBSeq/PhyResSE/Mykrobe, fed with WGS data from subsequent cultures, with a sensitivity of 93.5/98.5/93.1% and a specificity of 98.5/97.2/95.3%, respectively. Most residual discordances involved gene deletions/indels and 3-12% heteroresistant calls undetected by WGS analysis or natural pyrazinamide resistance of globally rare "Mycobacterium canettii" strains then unreported by Deeplex Myc-TB. On 1494 arduous sputa from a Democratic Republic of the Congo survey, 14 902 out of 19 422 (76.7%) possible susceptible or resistance phenotypes could be predicted culture-free.Deeplex Myc-TB may enable fast, tailored tuberculosis treatment.


Subject(s)
Mycobacterium tuberculosis , Pharmaceutical Preparations , Tuberculosis, Multidrug-Resistant , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Humans , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy
14.
Am J Trop Med Hyg ; 103(4): 1443-1446, 2020 10.
Article in English | MEDLINE | ID: mdl-32618257

ABSTRACT

We report a case of acquired fluoroquinolone (FQ) resistance under short-course multidrug-resistant tuberculosis (MDR-TB) treatment. The patient was managed at Kabutare hospital, one of the two specialized MDR-TB clinics in Rwanda. A low dose of moxifloxacin was used in the first three critical months. Acquired resistance was identified at the ninth month of treatment, 3 months after stopping kanamycin in a strain initially susceptible only to FQs, kanamycin, and clofazimine. Fluoroquinolone resistance was detected in the same month by deep sequencing as routinely used second-line line probe assay and phenotypic drug susceptibility testing. High-dose FQ, preferably gatifloxacin, should be used to maximize effectiveness.


Subject(s)
Fluoroquinolones/therapeutic use , Mycobacterium tuberculosis/drug effects , Tuberculosis, Multidrug-Resistant/drug therapy , Antitubercular Agents/therapeutic use , Clofazimine/therapeutic use , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Female , Gatifloxacin/therapeutic use , Genes, Bacterial , High-Throughput Nucleotide Sequencing , Humans , Kanamycin/therapeutic use , Microbial Sensitivity Tests , Middle Aged , Moxifloxacin/therapeutic use , Mycobacterium tuberculosis/genetics , Rwanda , Sequence Analysis, DNA
15.
Nat Commun ; 11(1): 2917, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32518235

ABSTRACT

The human- and animal-adapted lineages of the Mycobacterium tuberculosis complex (MTBC) are thought to have expanded from a common progenitor in Africa. However, the molecular events that accompanied this emergence remain largely unknown. Here, we describe two MTBC strains isolated from patients with multidrug resistant tuberculosis, representing an as-yet-unknown lineage, named Lineage 8 (L8), seemingly restricted to the African Great Lakes region. Using genome-based phylogenetic reconstruction, we show that L8 is a sister clade to the known MTBC lineages. Comparison with other complete mycobacterial genomes indicate that the divergence of L8 preceded the loss of the cobF genome region - involved in the cobalamin/vitamin B12 synthesis - and gene interruptions in a subsequent common ancestor shared by all other known MTBC lineages. This discovery further supports an East African origin for the MTBC and provides additional molecular clues on the ancestral genome reduction associated with adaptation to a pathogenic lifestyle.


Subject(s)
Genome, Bacterial , Mycobacterium tuberculosis/classification , Tuberculosis, Multidrug-Resistant/microbiology , Aged , DNA, Bacterial/genetics , Evolution, Molecular , Genetic Variation , Genomics , Genotype , Humans , Likelihood Functions , Limit of Detection , Male , Mutation , Mycobacterium tuberculosis/isolation & purification , Phenotype , Phylogeny , Rifampin/pharmacology , Rwanda , Uganda
16.
Nat Microbiol ; 5(5): 735-745, 2020 05.
Article in English | MEDLINE | ID: mdl-32341568

ABSTRACT

The multidrug-resistant Staphylococcus capitis NRCS-A clone is responsible for sepsis in preterm infants in neonatal intensive care units (NICUs) worldwide. Here, to retrace the spread of this clone and to identify drivers of its specific success, we investigated a representative collection of 250 S. capitis isolates from adults and newborns. Bayesian analyses confirmed the spread of the NRCS-A clone and enabled us to date its emergence in the late 1960s and its expansion during the 1980s, coinciding with the establishment of NICUs and the increasing use of vancomycin in these units, respectively. This dynamic was accompanied by the acquisition of mutations in antimicrobial resistance- and bacteriocin-encoding genes. Furthermore, combined statistical tools and a genome-wide association study convergently point to vancomycin resistance as a major driver of NRCS-A success. We also identified another S. capitis subclade (alpha clade) that emerged independently, showing parallel evolution towards NICU specialization and non-susceptibility to vancomycin, indicating convergent evolution in NICU-associated pathogens. These findings illustrate how the broad use of antibiotics can repeatedly lead initially commensal drug-susceptible bacteria to evolve into multidrug-resistant clones that are able to successfully spread worldwide and become pathogenic for highly vulnerable patients.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Neonatal Sepsis/microbiology , Staphylococcus capitis/drug effects , Staphylococcus capitis/genetics , Adult , Bayes Theorem , France , Genes, Bacterial/genetics , Genome, Bacterial , Genome-Wide Association Study , Genotype , Humans , Infant , Infant, Newborn , Intensive Care Units, Neonatal , Microbial Sensitivity Tests , Mutation , Phenotype , Polymorphism, Single Nucleotide , Recombination, Genetic , Staphylococcal Infections/microbiology , Staphylococcus capitis/isolation & purification , Staphylococcus capitis/pathogenicity , Vancomycin/therapeutic use
17.
Lancet Microbe ; 1(2): e74-e83, 2020 Jun.
Article in English | MEDLINE | ID: mdl-35544156

ABSTRACT

BACKGROUND: The Xpert MTB/RIF (Xpert) assay is used globally to rapidly diagnose tuberculosis and resistance to rifampicin. We investigated the frequency and predictors of false-positive findings of rifampicin resistance with Xpert. METHODS: We did a prospective, observational study of individuals who were enrolled in a Rwandan nationwide diagnostic cohort study (DIAMA trial; NCT03303963). We included patients identified to have rifampicin resistance on initial Xpert testing. We did a repeat Xpert assay and used rpoB Sanger and deep sequencing alongside phenotypic drug susceptibility testing (pDST) to ascertain final rifampicin susceptibility status, with any (hetero)resistant result overriding. We used multivariable logistic regression to assess predictors of false rifampicin resistance on initial Xpert testing, adjusted for HIV status, tuberculosis treatment history, initial Xpert semi-quantitative bacillary load, and initial Xpert probe. FINDINGS: Between May 4, 2017, and April 30, 2019, 175 people were identified with rifampicin resistance at initial Xpert testing, of whom 154 (88%) underwent repeat Xpert assay. 54 (35%) patients were confirmed as rifampicin resistant on repeat testing and 100 (65%) were not confirmed with resistance. After further testing and sequencing, 121 (79%) of 154 patients had a final confirmed status for rifampicin susceptibility. 57 (47%) of 121 patients were confirmed to have a false rifampicin resistance result and 64 (53%) had true rifampicin resistance. A high pretest probability of rifampicin resistance did not decrease the odds of false rifampicin resistance (adjusted odds ratio [aOR] 6·0, 95% CI 1·0-35·0, for new tuberculosis patients vs patients who needed retreatment). Ten (16%) of the 64 patients with true rifampicin resistance did not have confirmed rifampicin resistance on repeat Xpert testing, of whom four had heteroresistance. Of 63 patients with a very low bacillary load on Xpert testing, 54 (86%) were falsely diagnosed with rifampicin-resistant tuberculosis. Having a very low bacillary load on Xpert testing was strongly associated with false rifampicin resistance at the initial Xpert assay (aOR 63·6, 95% CI 9·9-410·4). INTERPRETATION: The Xpert testing algorithm should include an assessment of bacillary load and retesting in case rifampicin resistance is detected on a paucibacillary sputum sample. Only when rifampicin resistance has been confirmed on repeat testing should multidrug-resistant tuberculosis treatment be started. When rifampicin resistance has not been confirmed on repeat testing, we propose that patients should be given first-line anti-tuberculosis drugs and monitored closely during treatment, including by baseline culture, pDST, and further Xpert testing. FUNDING: The European & Developing Countries Clinical Trials Partnership 2 programme, and Belgian Directorate General for Development Cooperation.

19.
Infect Genet Evol ; 77: 104075, 2020 01.
Article in English | MEDLINE | ID: mdl-31634642

ABSTRACT

Genotyping of Mycobacterium avium subsp. paratuberculosis (Map) is an indispensable tool for surveillance of this significant veterinary pathogen. For Map, multi-locus variable number tandem repeat analysis (MLVA) targeting mycobacterial interspersed repetitive units (MIRUs) and other variable number variable-number tandem repeats (VNTRs) was established using 8 markers. In the recent past this standard, portable, reproducible and discriminatory typing method has been frequently applied alone or in combinations with multi-locus short-sequence-repeat (MLSSR) sequencing. With the widespread use of these genotyping methods, standardization between laboratories needs to be managed, and knowledge of existing profiles and newly defined genotypes should be indexed and shared. To meet this need, a web application called "MAC-INMV-SSR database" was developed. This freely accessible service allows users to compare MLVA and MLSSR subtype data of their strains with those of existing reference strains analyzed with the same genotyping methods.


Subject(s)
Computational Biology/methods , Genotyping Techniques/standards , Mycobacterium avium Complex/classification , Genetic Markers , Genotyping Techniques/methods , Internet , Microsatellite Repeats , Minisatellite Repeats , Multilocus Sequence Typing/methods , Multilocus Sequence Typing/standards , Mycobacterium avium Complex/genetics , Mycobacterium avium subsp. paratuberculosis/classification , Mycobacterium avium subsp. paratuberculosis/genetics , Software
20.
Infect Genet Evol ; 78: 104126, 2020 03.
Article in English | MEDLINE | ID: mdl-31783188

ABSTRACT

Although the number of new tuberculosis (TB) cases registered per year has decreased by 3-fold between 2001 and 2017 in Latvia, the TB incidence and rates of multidrug resistant TB in this Baltic country remain substantially higher than in most other European countries. Molecular typing methods of Mycobacterium tuberculosis (MTB) play an important role both in clinical studies of the disease and the epidemiological investigations, allowing to describe and characterize the pathogen's population structure and spread of particular genotypes. Aim of this study was to examine the prevalence of MTB lineages in Riga and Riga region of Latvia within a five-year period (2008-2012), and to evaluate the discriminatory power (DP) of spoligotyping, standard 24-locus MIRU-VNTR and IS6110-RFLP methods in this setting. The results showed that the main MTB spoligotype families were Beijing (25.3%) and LAM (24.3%), followed by T (22.1%), Ural (11.2%), Haarlem (6.6%) and X superfamily (3.4%). This distribution remained stable over the five consecutive years. 67.6% of MTB isolates were pan-susceptible, and 32.4% were resistant to any drug; multi-drug resistance was found in 5.8% of MTB strains, and 7.6% of MTB isolates were extensively drug-resistant. Drug resistance was associated with SIT1, SIT283 and SIT42 genotypes, while SIT1 and SIT42 were overrepresented among multi drug-resistant MTB strains. Overall, DP of spoligotyping method alone was 0.8953, while DP of both 24-locus MIRU-VNTR analysis and IS6110 RFLP was higher (DP = 0.9846 and 0.9927, respectively), mainly due to the improvement of the resolution for the Beijing strains. In conclusion, this work represents the first comprehensive molecular epidemiological description of TB in Latvia, highlighting the high genetic diversity of MTB strains circulating in Riga and Riga region. In combination with detailed epidemiological data this approach was helpful for the in-depth understanding of epidemiological processes in settings where the Next-Gen sequencing is not available as a routine method.


Subject(s)
Mycobacterium tuberculosis/genetics , Tuberculosis/epidemiology , Tuberculosis/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Antitubercular Agents/pharmacology , Child , Child, Preschool , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Female , Genetic Variation , Genotyping Techniques , Humans , Infant , Infant, Newborn , Latvia/epidemiology , Male , Microbial Sensitivity Tests , Middle Aged , Minisatellite Repeats , Molecular Epidemiology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Polymorphism, Restriction Fragment Length , Prevalence , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...