Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Signal Behav ; 19(1): 2362518, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38836385

ABSTRACT

Cotton is an important agricultural crop to many regions across the globe but is sensitive to low-temperature exposure. The activity of the enzyme SENSITIVE TO FREEZING 2 (SFR2) improves cold tolerance of plants and produces trigalactosylsyldiacylglycerol (TGDG), but its role in cold sensitive plants, such as cotton remains unknown. Recently, it was reported that cotton SFR2 produced very little TGDG under normal and cold conditions. Here, we investigate cotton SFR2 activation and TGDG production. Using multiple approaches in the native system and transformation into Arabidopsis thaliana, as well as heterologous yeast expression, we provide evidence that cotton SFR2 activates differently than previously found among other plant species. We conclude with the hypothesis that SFR2 in cotton is not activated in a similar manner regarding acidification or freezing like Arabidopsis and that other regions of SFR2 protein are critical for activation of the enzyme than previously reported.


Subject(s)
Arabidopsis , Cold Temperature , Gossypium , Gossypium/genetics , Gossypium/metabolism , Gossypium/physiology , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Stress, Physiological , Cold-Shock Response/physiology , Gene Expression Regulation, Plant , Plants, Genetically Modified
2.
J Exp Bot ; 74(17): 5405-5417, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37357909

ABSTRACT

Severe cold, defined as a damaging cold beyond acclimation temperatures, has unique responses, but the signaling and evolution of these responses are not well understood. Production of oligogalactolipids, which is triggered by cytosolic acidification in Arabidopsis (Arabidopsis thaliana), contributes to survival in severe cold. Here, we investigated oligogalactolipid production in species from bryophytes to angiosperms. Production of oligogalactolipids differed within each clade, suggesting multiple evolutionary origins of severe cold tolerance. We also observed greater oligogalactolipid production in control samples than in temperature-challenged samples of some species. Further examination of representative species revealed a tight association between temperature, damage, and oligogalactolipid production that scaled with the cold tolerance of each species. Based on oligogalactolipid production and transcript changes, multiple angiosperm species share a signal of oligogalactolipid production initially described in Arabidopsis, namely cytosolic acidification. Together, these data suggest that oligogalactolipid production is a severe cold response that originated from an ancestral damage response that remains in many land plant lineages and that cytosolic acidification may be a common signaling mechanism for its activation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Magnoliopsida , Arabidopsis/metabolism , Cold Temperature , Arabidopsis Proteins/metabolism , Temperature , Magnoliopsida/metabolism , Acclimatization/physiology , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...