Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
Plants (Basel) ; 13(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891386

ABSTRACT

This study investigated the thermal properties of potato and hop pollen for cryopreservation and subsequent cross-breeding. Phase transitions and frozen water content in selected pollen samples were measured using a differential scanning calorimeter (DSC). Unlike hop pollen, potato pollen showed high variability in thermal properties and water content. Three specific types of pollen samples based on their thermal characteristics and water content were distinguished by DSC in potato: (1) 'glassy', with a water content lower than 0.21 g water per g dry matter; (2) 'transient', with a water content between 0.27 and 0.34 g of water per g of dry matter; (3) 'frozen', with a water content higher than 0.34 g of water per g of dry matter. Only the 'glassy' pollen samples with a low water content showed suitable properties for its long-term storage using cryopreservation in potato and hops. Cryopreservation of pollen did not significantly reduce its viability, and cryopreserved pollen was successfully used to produce both potato and hop hybrids. The results indicate that cryopreservation is a feasible technique for the preservation and utilization of pollen of these crops in the breeding process.

2.
Cardiovasc Diabetol ; 23(1): 223, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943140

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) are glucose-lowering agents used for the treatment of type 2 diabetes mellitus, which also improve heart failure and decrease the risk of cardiovascular complications. Epicardial adipose tissue (EAT) dysfunction was suggested to contribute to the development of heart failure. We aimed to elucidate a possible role of changes in EAT metabolic and inflammatory profile in the beneficial cardioprotective effects of SGLT-2i in subjects with severe heart failure. METHODS: 26 subjects with severe heart failure, with reduced ejection fraction, treated with SGLT-2i versus 26 subjects without treatment, matched for age (54.0 ± 2.1 vs. 55.3 ± 2.1 years, n.s.), body mass index (27.8 ± 0.9 vs. 28.8 ± 1.0 kg/m2, n.s.) and left ventricular ejection fraction (20.7 ± 0.5 vs. 23.2 ± 1.7%, n.s.), who were scheduled for heart transplantation or mechanical support implantation, were included in the study. A complex metabolomic and gene expression analysis of EAT obtained during surgery was performed. RESULTS: SGLT-2i ameliorated inflammation, as evidenced by the improved gene expression profile of pro-inflammatory genes in adipose tissue and decreased infiltration of immune cells into EAT. Enrichment of ether lipids with oleic acid noted on metabolomic analysis suggests a reduced disposition to ferroptosis, potentially further contributing to decreased oxidative stress in EAT of SGLT-2i treated subjects. CONCLUSIONS: Our results show decreased inflammation in EAT of patients with severe heart failure treated by SGLT-2i, as compared to patients with heart failure without this therapy. Modulation of EAT inflammatory and metabolic status could represent a novel mechanism behind SGLT-2i-associated cardioprotective effects in patients with heart failure.


Subject(s)
Adipose Tissue , Heart Failure , Inflammation Mediators , Pericardium , Severity of Illness Index , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Failure/drug therapy , Middle Aged , Male , Female , Pericardium/metabolism , Pericardium/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Treatment Outcome , Inflammation Mediators/metabolism , Stroke Volume/drug effects , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Ventricular Function, Left/drug effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/diagnosis , Metabolomics , Biomarkers/blood , Epicardial Adipose Tissue
3.
EMBO Rep ; 25(7): 2896-2913, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38769420

ABSTRACT

Canonical RNA interference (RNAi) is sequence-specific mRNA degradation guided by small interfering RNAs (siRNAs) made by RNase III Dicer from long double-stranded RNA (dsRNA). RNAi roles include gene regulation, antiviral immunity or defense against transposable elements. In mammals, RNAi is constrained by Dicer's adaptation to produce another small RNA class-microRNAs. However, a truncated Dicer isoform (ΔHEL1) supporting RNAi exists in mouse oocytes. A homozygous mutation to express only the truncated ΔHEL1 variant causes dysregulation of microRNAs and perinatal lethality in mice. Here, we report the phenotype and canonical RNAi activity in DicerΔHEL1/wt mice, which are viable, show minimal miRNome changes, but their endogenous siRNA levels are an order of magnitude higher. We show that siRNA production in vivo is limited by available dsRNA, but not by Protein kinase R, a dsRNA sensor of innate immunity. dsRNA expression from a transgene yields sufficient siRNA levels to induce efficient RNAi in heart and muscle. DicerΔHEL1/wt mice with enhanced canonical RNAi offer a platform for examining potential and limits of mammalian RNAi in vivo.


Subject(s)
RNA Interference , RNA, Double-Stranded , RNA, Small Interfering , Ribonuclease III , Animals , Ribonuclease III/genetics , Ribonuclease III/metabolism , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/genetics , Mice , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Protein Isoforms/genetics , Protein Isoforms/metabolism
4.
Peptides ; 174: 171165, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307418

ABSTRACT

Endogenous opioid peptides serve as potent analgesics through the opioid receptor (OR) activation. However, they often suffer from poor metabolic stability, low lipophilicity, and low blood-brain barrier permeability. Researchers have developed many strategies to overcome the drawbacks of current pain medications and unwanted biological effects produced by the interaction with opioid receptors. Here, we tested multifunctional enkephalin analogs LYS739 (MOR/DOR agonist and KOR partial antagonist) and LYS744 (MOR/DOR agonist and KOR full antagonist) under in vivo conditions in comparison with MOR agonist, morphine. We applied 2D electrophoretic resolution to investigate differences in proteome profiles of crude membrane (CM) fractions isolated from the rat brain cortex and hippocampus exposed to the drugs (10 mg/kg, seven days). Our results have shown that treatment with analog LYS739 induced the most protein changes in cortical and hippocampal samples. The identified proteins were mainly associated with energy metabolism, cell shape and movement, apoptosis, protein folding, regulation of redox homeostasis, and signal transduction. Among these, the isoform of mitochondrial ATP synthase subunit beta (ATP5F1B) was the only protein upregulation in the hippocampus but not in the brain cortex. Contrarily, the administration of analog LYS744 caused a small number of protein alterations in both brain parts. Our results indicate that the KOR full antagonism, together with MOR/DOR agonism of multifunctional opioid ligands, can be beneficial in treating chronic pain states by reducing changes in protein expression levels but retaining analgesic efficacy.


Subject(s)
Morphine , Receptors, Opioid, mu , Rats , Animals , Morphine/pharmacology , Receptors, Opioid, mu/metabolism , Receptors, Opioid/metabolism , Analgesics, Opioid/pharmacology , Analgesics , Enkephalins/metabolism , Hippocampus/metabolism , Brain/metabolism
5.
EMBO Rep ; 24(7): e57215, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37310138

ABSTRACT

RNase III Dicer produces small RNAs guiding sequence-specific regulations, with important biological roles in eukaryotes. Major Dicer-dependent mechanisms are RNA interference (RNAi) and microRNA (miRNA) pathways, which employ distinct types of small RNAs. Small interfering RNAs (siRNAs) for RNAi are produced by Dicer from long double-stranded RNA (dsRNA) as a pool of different small RNAs. In contrast, miRNAs have specific sequences because they are precisely cleaved out from small hairpin precursors. Some Dicer homologs efficiently generate both, siRNAs and miRNAs, while others are adapted for biogenesis of one small RNA type. Here, we review the wealth of recent structural analyses of animal and plant Dicers, which have revealed how different domains and their adaptations contribute to substrate recognition and cleavage in different organisms and pathways. These data imply that siRNA generation was Dicer's ancestral role and that miRNA biogenesis relies on derived features. While the key element of functional divergence is a RIG-I-like helicase domain, Dicer-mediated small RNA biogenesis also documents the impressive functional versatility of the dsRNA-binding domain.


Subject(s)
MicroRNAs , Ribonuclease III , Animals , Ribonuclease III/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Double-Stranded/genetics , RNA Interference
6.
Brain Res ; 1813: 148428, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37263551

ABSTRACT

Protracted opioid withdrawal is considered to be a traumatic event with many adverse effects. However, little attention is paid to its consequences on the protein expression in the rat brain. A better understanding of the changes at the molecular level is essential for designing future innovative drug therapies. Our previous proteomic data indicated that long-term morphine withdrawal is associated with altered proteins functionally involved in energy metabolism, cytoskeletal changes, oxidative stress, apoptosis, or signal transduction. In this study, we selected peroxiredoxin II (PRX II) as a marker of oxidative stress, 14-3-3 proteins as adaptors, and creatine kinase-B (CK-B) as a marker of energy metabolism to detect their amounts in the brain cortex and hippocampus isolated from rats after 3-month (3 MW) and 6-month morphine withdrawal (6 MW). Methodically, our work was based on immunoblotting accompanied by 2D resolution of PRX II and 14-3-3 proteins. Our results demonstrate significant upregulation of PRX II in the rat brain cortex (3-fold) and hippocampus (1.3-fold) after 3-month morphine abstinence, which returned to the baseline six months since the drug was withdrawn. Interestingly, the level of 14-3-3 proteins was downregulated in both brain areas in 3 MW samples and remained decreased only in the brain cortex of 6 MW. Our findings suggest that the rat brain cortex and hippocampus exhibit the oxidative stress-induced vulnerability represented by compensatory upregulation of PRX II after three months of morphine withdrawal.


Subject(s)
Morphine Dependence , Substance Withdrawal Syndrome , Rats , Animals , Morphine/metabolism , 14-3-3 Proteins/metabolism , Up-Regulation , Proteomics , Peroxiredoxins/metabolism , Peroxiredoxins/pharmacology , Hippocampus/metabolism , Brain/metabolism , Substance Withdrawal Syndrome/metabolism
7.
Polymers (Basel) ; 15(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37177153

ABSTRACT

Elastic electrically conductive composites with an ethylene octene copolymer matrix (EOC) and vapor-grown carbon fibers (VGCF) were prepared by ultrasonication in a toluene solution, and their morphology, mechanical and electrical properties were also evaluated. EOC/CF composites were estimated for their mechanical and viscoelastic properties. The morphology of the composites was analyzed using scanning electron microscopy (SEM), and stress-strain curves were generated to measure the stress and tensile modulus of the composites. The experimental results were compared with various theoretical models, including the Burgers model, which separates viscoelastic behavior into several components. A dynamic mechanical analysis was also used to measure the composites' storage modulus, loss modulus, and damping factor at different frequencies. The composites' complex viscosity and storage modulus were increased with higher wt.% of CF, which enhances the elastic response. Electrical resistivity measurements were conducted on the composites and it was found that the resistivity decreased as the sample was loaded and increased as it was unloaded. Overall, the study provides insights into the mechanical and viscoelastic properties of EOC/CF composites, which could be helpful in developing sensors such as pressure/strain sensors.

8.
Polymers (Basel) ; 15(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37112099

ABSTRACT

The effect of fusion temperature and duration on the nonisothermal crystallization kinetics of polyamide 6 (PA6) was investigated using differential scanning calorimetry (DSC) and a polarized optical microscope (OM). The rapid cooling method involved heating the polymer above its melting point, holding it at this temperature to ensure complete melting, and then rapidly cooling it to the crystallization temperature. By monitoring the heat flow during cooling, the crystallization kinetics of PA6 were characterized, including the degree of crystallinity, crystallization temperature, and crystallization rate. The study found that changing the fusion temperature and duration significantly impacted the crystallization kinetics of PA6. Increasing the fusion temperature decreased the degree of crystallinity, with smaller nucleation centers requiring a higher degree of supercooling for crystallization. The crystallization temperature shifted towards lower temperatures, and the crystallization kinetics slowed down. The study also found that lengthening the fusion time raised the relative crystallinity, but any further increase did not result in a significant change. The study showed that an increase in fusion temperature led to a longer time needed to reach a given level of crystallinity, reducing the crystallization rate. This can be explained by the thermodynamics of the crystallization process, where higher temperatures promote molecular mobility and crystal growth. Moreover, the study revealed that decreasing a polymer's fusion temperature can lead to a greater degree of nucleation and faster growth of the crystalline phase, which can significantly impact the values of the Avrami parameters used to characterize the crystallization kinetics.

9.
Nutrients ; 15(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049560

ABSTRACT

Myokines represent important regulators of muscle metabolism. Our study aimed to explore the effects of a cyclical ketogenic reduction diet (CKD) vs. a nutritionally balanced reduction diet (RD) combined with regular resistance/aerobic training in healthy young males on serum concentrations of myokines and their potential role in changes in physical fitness. Twenty-five subjects undergoing regular resistance/aerobic training were randomized to the CKD (n = 13) or RD (n = 12) groups. Anthropometric and spiroergometric parameters, muscle strength, biochemical parameters, and serum concentrations of myokines and cytokines were assessed at baseline and after 8 weeks of intervention. Both diets reduced body weight, body fat, and BMI. Muscle strength and endurance performance were improved only by RD. Increased musclin (32.9 pg/mL vs. 74.5 pg/mL, p = 0.028) and decreased osteonectin levels (562 pg/mL vs. 511 pg/mL, p = 0.023) were observed in RD but not in the CKD group. In contrast, decreased levels of FGF21 (181 pg/mL vs. 86.4 pg/mL, p = 0.003) were found in the CKD group only. Other tested myokines and cytokines were not significantly affected by the intervention. Our data suggest that changes in systemic osteonectin and musclin levels could contribute to improved muscle strength and endurance performance and partially explain the differential effects of CKD and RD on physical fitness.


Subject(s)
Diet, Ketogenic , Renal Insufficiency, Chronic , Resistance Training , Male , Humans , Osteonectin , Muscle Strength/physiology , Diet, Reducing , Cytokines , Body Composition/physiology
10.
Mil Med ; 188(1-2): e133-e139, 2023 01 04.
Article in English | MEDLINE | ID: mdl-33959775

ABSTRACT

BACKGROUND: Nanofiber wound dressings remain the domain of in vitro studies. The purpose of our study was to verify the benefits of chitosan (CTS) and polylactide (PLA)-based nanofiber wound dressings on a porcine model of a naturally contaminated standardized wound and compare them with the conventional dressings, i.e., gauze and Inadine. MATERIAL AND METHODS: The study group included 32 pigs randomized into four homogeneous groups according to the wound dressing type. Standardized wounds were created on their backs, and wound dressings were regularly changed. We evaluated difficulty of handling individual dressing materials and macroscopic appearance of the wounds. Wound swabs were taken for bacteriological examination. Blood samples were obtained to determine blood count values and serum levels of acute phase proteins (serum amyloid A, C-reactive protein, and haptoglobin). The crucial point of the study was histological analysis. Microscopic evaluation was focused on the defect depth and tissue reactions, including formation of the fibrin exudate with neutrophil granulocytes, the layer of granulation and cellular connective tissue, and the reepithelialization. Statistical analysis was performed by using SPSS software. The analysis was based on the Kruskal-Wallis H test and Mann-Whitney U test followed by Bonferroni correction. Significance was set at P < .05. RESULTS: Macroscopic examination did not show any difference in wound healing among the groups. However, evaluation of histological findings demonstrated that PLA-based nanofiber dressing accelerated the proliferative (P = .025) and reepithelialization (P < .001) healing phases, while chitosan-based nanofiber dressing potentiated and accelerated the inflammatory phase (P = .006). No statistically significant changes were observed in the blood count or acute inflammatory phase proteins during the trial. Different dynamics were noted in serum amyloid A values in the group treated with PLA-based nanofiber dressing (P = .006). CONCLUSION: Based on the microscopic examination, we have documented a positive effect of nanofiber wound dressings on acceleration of individual phases of the healing process. Nanofiber wound dressings have a potential to become in future part of the common wound care practice.


Subject(s)
Chitosan , Nanofibers , Animals , Swine , Nanofibers/therapeutic use , Chitosan/pharmacology , Chitosan/therapeutic use , Serum Amyloid A Protein/pharmacology , Wound Healing , Bandages
11.
BMC Biol ; 20(1): 272, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36482406

ABSTRACT

BACKGROUND: Genes, principal units of genetic information, vary in complexity and evolutionary history. Less-complex genes (e.g., long non-coding RNA (lncRNA) expressing genes) readily emerge de novo from non-genic sequences and have high evolutionary turnover. Genesis of a gene may be facilitated by adoption of functional genic sequences from retrotransposon insertions. However, protein-coding sequences in extant genomes rarely lack any connection to an ancestral protein-coding sequence. RESULTS: We describe remarkable evolution of the murine gene D6Ertd527e and its orthologs in the rodent Muroidea superfamily. The D6Ertd527e emerged in a common ancestor of mice and hamsters most likely as a lncRNA-expressing gene. A major contributing factor was a long terminal repeat (LTR) retrotransposon insertion carrying an oocyte-specific promoter and a 5' terminal exon of the gene. The gene survived as an oocyte-specific lncRNA in several extant rodents while in some others the gene or its expression were lost. In the ancestral lineage of Mus musculus, the gene acquired protein-coding capacity where the bulk of the coding sequence formed through CAG (AGC) trinucleotide repeat expansion and duplications. These events generated a cytoplasmic serine-rich maternal protein. Knock-out of D6Ertd527e in mice has a small but detectable effect on fertility and the maternal transcriptome. CONCLUSIONS: While this evolving gene is not showing a clear function in laboratory mice, its documented evolutionary history in Muroidea during the last ~ 40 million years provides a textbook example of how a several common mutation events can support de novo gene formation, evolution of protein-coding capacity, as well as gene's demise.


Subject(s)
Muridae , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics
12.
Mol Cell ; 82(21): 4064-4079.e13, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36332606

ABSTRACT

MicroRNA (miRNA) and RNA interference (RNAi) pathways rely on small RNAs produced by Dicer endonucleases. Mammalian Dicer primarily supports the essential gene-regulating miRNA pathway, but how it is specifically adapted to miRNA biogenesis is unknown. We show that the adaptation entails a unique structural role of Dicer's DExD/H helicase domain. Although mice tolerate loss of its putative ATPase function, the complete absence of the domain is lethal because it assures high-fidelity miRNA biogenesis. Structures of murine Dicer•-miRNA precursor complexes revealed that the DExD/H domain has a helicase-unrelated structural function. It locks Dicer in a closed state, which facilitates miRNA precursor selection. Transition to a cleavage-competent open state is stimulated by Dicer-binding protein TARBP2. Absence of the DExD/H domain or its mutations unlocks the closed state, reduces substrate selectivity, and activates RNAi. Thus, the DExD/H domain structurally contributes to mammalian miRNA biogenesis and underlies mechanistical partitioning of miRNA and RNAi pathways.


Subject(s)
MicroRNAs , Ribonuclease III , Mice , Animals , Ribonuclease III/metabolism , RNA Interference , MicroRNAs/genetics , MicroRNAs/metabolism , Carrier Proteins/metabolism , Mammals/metabolism
13.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077376

ABSTRACT

(1) Background: C1q TNF-related protein 3 (CTRP3) is an adipokine with anti-inflammatory and cardioprotective properties. In our study, we explored changes in serum CTRP3 and its gene expression in epicardial (EAT) and subcutaneous (SAT) adipose tissue in patients with and without coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM) undergoing elective cardiac surgery. (2) Methods: SAT, EAT, and blood samples were collected at the start and end of surgery from 34 patients: (i) 11 without CAD or T2DM, (ii) 14 with CAD and without T2DM, and (iii) 9 with both CAD and T2DM. mRNA levels of CTRP3 were assessed by quantitative reverse transcription PCR. Circulating levels of CTRP3 and other factors were measured using ELISA and Luminex Multiplex commercial kits. (3) Results: Baseline plasma levels of TNF-α and IL6 did not differ among the groups and increased at the end of surgery. Baseline circulating levels of CTRP3 did not differ among the groups and decreased after surgery. In contrast, baseline CTRP3 mRNA levels in EAT were significantly decreased in CAD/T2DM group, while no differences were found for TNF-α and IL6 gene expression. (4) Conclusions: Our data suggest that decreased EAT mRNA levels of CTRP3 could contribute to higher risk of atherosclerosis in patients with CAD and T2DM.


Subject(s)
Cardiac Surgical Procedures , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Adipose Tissue/metabolism , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Coronary Artery Disease/surgery , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/surgery , Humans , Interleukin-6/metabolism , Pericardium/metabolism , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
14.
Musculoskelet Sci Pract ; 62: 102655, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35998419

ABSTRACT

BACKGROUND: Intra-abdominal pressure (IAP) is an important mechanism stabilizing the spine and trunk. IAP regulation depends on the coordination of abdominal muscles, diaphragm and pelvic floor muscles. OBJECTIVE: To determine the differences in abdominal wall tension (AWT) of various postural positions, first without any correction, then after verbal and manual instructions according to Dynamic Neuromuscular Stabilization (DNS) principles. METHODS: In a cross-sectional observational study, thirty healthy individuals (mean age = 22.73 ± 1.91 years) were fitted with two Ohmbelt sensors contralaterally above the inguinal ligament and in the upper lumbar triangle. AWT was measured during five postural positions: sitting, supine with legs raised, squat, bear and hang position. First, spontaneous AWT was measured, then again after manual and verbal instructions following DNS principles. RESULTS: AWT increased significantly with DNS instructions compared to spontaneous activation. Both sensors recorded significant increases (p < .01; Cohen's d = -1.13 to -2.06) in all observed postural situations. The increase in activity occurred simultaneously on both sensors, with no significant differences noted in pressure increases between the sensors. The greatest activation for both sensors occurred in the bear position. Significant increases in activity were identified for both sensors in the supine leg raise position and in the bear position compared to spontaneous activation in sitting (p < .001). There were no statistically significant differences (for both sensors) between women and men in any position. CONCLUSION: The amount of AWT significantly increases after verbal and manual instructions according to DNS. The greatest abdominal wall activation was achieved in the bear position.


Subject(s)
Abdominal Wall , Male , Humans , Female , Young Adult , Adult , Cross-Sectional Studies , Abdominal Muscles , Posture/physiology , Abdominal Oblique Muscles
15.
Biomedicines ; 10(8)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36009516

ABSTRACT

This work aimed to test the effect of 7-day exposure of rats to multifunctional enkephalin analogs LYS739 and LYS744 at doses of 3 mg/kg and 10 mg/kg on the protein composition of rat spleen lymphocytes, brain cortex, and hippocampus. Alterations of proteome induced by LYS739 and LYS744 were compared with those elicited by morphine. The changes in rat proteome profiles were analyzed by label-free quantification (MaxLFQ). Proteomic analysis indicated that the treatment with 3 mg/kg of LYS744 caused significant alterations in protein expression levels in spleen lymphocytes (45), rat brain cortex (31), and hippocampus (42). The identified proteins were primarily involved in RNA processing and the regulation of cytoskeletal dynamics. In spleen lymphocytes, the administration of the higher 10 mg/kg dose of both enkephalin analogs caused major, extensive modifications in protein expression levels: LYS739 (119) and LYS744 (182). Among these changes, the number of proteins associated with immune responses and apoptotic processes was increased. LYS739 treatment resulted in the highest number of alterations in the rat brain cortex (152) and hippocampus (45). The altered proteins were functionally related to the regulation of transcription and cytoskeletal reorganization, which plays an essential role in neuronal plasticity. Administration with LYS744 did not increase the number of altered proteins in the brain cortex (26) and hippocampus (26). Our findings demonstrate that the effect of κ-OR full antagonism of LYS744 is opposite in the central nervous system and the peripheral region (spleen lymphocytes).

16.
Nat Commun ; 13(1): 1866, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35387987

ABSTRACT

Type 2 diabetes mellitus represents a major health problem with increasing prevalence worldwide. Limited efficacy of current therapies has prompted a search for novel therapeutic options. Here we show that treatment of pre-diabetic mice with mitochondrially targeted tamoxifen, a potential anti-cancer agent with senolytic activity, improves glucose tolerance and reduces body weight with most pronounced reduction of visceral adipose tissue due to reduced food intake, suppressed adipogenesis and elimination of senescent cells. Glucose-lowering effect of mitochondrially targeted tamoxifen is linked to improvement of type 2 diabetes mellitus-related hormones profile and is accompanied by reduced lipid accumulation in liver. Lower senescent cell burden in various tissues, as well as its inhibitory effect on pre-adipocyte differentiation, results in lower level of circulating inflammatory mediators that typically enhance metabolic dysfunction. Targeting senescence with mitochodrially targeted tamoxifen thus represents an approach to the treatment of type 2 diabetes mellitus and its related comorbidities, promising a complex impact on senescence-related pathologies in aging population of patients with type 2 diabetes mellitus with potential translation into the clinic.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Aged , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Glucose/metabolism , Humans , Mice , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
17.
Int J Mol Sci ; 23(2)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35055141

ABSTRACT

Chronic pain is associated with time-dependent structural and functional reorganization of the prefrontal cortex that may reflect adaptive pain compensatory and/or maladaptive pain-promoting mechanisms. However, the molecular underpinnings of these changes and whether there are time-dependent relationships to pain progression are not well characterized. In this study, we analyzed protein composition in the medial prefrontal cortex (mPFC) of rats at two timepoints after spinal nerve ligation (SNL) using two-dimensional gel electrophoresis (2D-ELFO) and liquid chromatography with tandem mass spectrometry (LC-MS/MS). SNL, but not sham-operated, rats developed persistent tactile allodynia and thermal hyperalgesia, confirming the presence of experimental neuropathic pain. Two weeks after SNL (early timepoint), we identified 11 proteins involved in signal transduction, protein transport, cell homeostasis, metabolism, and apoptosis, as well as heat-shock proteins and chaperones that were upregulated by more than 1.5-fold compared to the sham-operated rats. Interestingly, there were only four significantly altered proteins identified at 8 weeks after SNL (late timepoint). These findings demonstrate extensive time-dependent modifications of protein expression in the rat mPFC under a chronic neuropathic pain state that might underlie the evolution of chronic pain characterized by early pain-compensatory and later aberrant mechanisms.


Subject(s)
Hyperalgesia/metabolism , Neuralgia/metabolism , Prefrontal Cortex/metabolism , Proteomics/methods , Spinal Nerves/injuries , Animals , Chromatography, Liquid , Gene Expression Regulation , Hyperalgesia/etiology , Male , Neuralgia/etiology , Pain Measurement , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Time Factors
18.
EMBO Rep ; 23(2): e53514, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34866300

ABSTRACT

miRNAs, ~22nt small RNAs associated with Argonaute (AGO) proteins, are important negative regulators of gene expression in mammalian cells. However, mammalian maternal miRNAs show negligible repressive activity and the miRNA pathway is dispensable for oocytes and maternal-to-zygotic transition. The stoichiometric hypothesis proposed that this is caused by dilution of maternal miRNAs during oocyte growth. As the dilution affects miRNAs but not mRNAs, it creates unfavorable miRNA:mRNA stoichiometry for efficient repression of cognate mRNAs. Here, we report that porcine ssc-miR-205 and bovine bta-miR-10b are exceptional miRNAs, which resist the diluting effect of oocyte growth and can efficiently suppress gene expression. Additional analysis of ssc-miR-205 shows that it has higher stability, reduces expression of endogenous targets, and contributes to the porcine oocyte-to-embryo transition. Consistent with the stoichiometric hypothesis, our results show that the endogenous miRNA pathway in mammalian oocytes is intact and that maternal miRNAs can efficiently suppress gene expression when a favorable miRNA:mRNA stoichiometry is established.


Subject(s)
MicroRNAs , Animals , Cattle , MicroRNAs/genetics , MicroRNAs/metabolism , Oocytes/metabolism , Oogenesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine , Zygote/metabolism
19.
Plants (Basel) ; 10(11)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34834660

ABSTRACT

Viroids are small infectious pathogens, composed of a short single-stranded circular RNA. Hop (Humulus lupulus L.) plants are hosts to four viroids from the family Pospiviroidae. Hop latent viroid (HLVd) is spread worldwide in all hop-growing regions without any visible symptoms on infected hop plants. In this study, we evaluated the influence of HLVd infection on the content and the composition of secondary metabolites in maturated hop cones, together with gene expression analyses of involved biosynthesis and regulation genes for Saaz, Sládek, Premiant and Agnus cultivars. We confirmed that the contents of alpha bitter acids were significantly reduced in the range from 8.8% to 34% by viroid infection. New, we found that viroid infection significantly reduced the contents of xanthohumol in the range from 3.9% to 23.5%. In essential oils of Saaz cultivar, the contents of monoterpenes, terpene epoxides and terpene alcohols were increased, but the contents of sesquiterpenes and terpene ketones were decreased. Secondary metabolites changes were supported by gene expression analyses, except essential oils. Last-step biosynthesis enzyme genes, namely humulone synthase 1 (HS1) and 2 (HS2) for alpha bitter acids and O-methytransferase 1 (OMT1) for xanthohumol, were down-regulated by viroid infection. We found that the expression of ribosomal protein L5 (RPL5) RPL5 and the splicing of transcription factor IIIA-7ZF were affected by viroid infection and a disbalance in proteosynthesis can influence transcriptions of biosynthesis and regulatory genes involved in of secondary metabolites biosynthesis. We suppose that RPL5/TFIIIA-7ZF regulatory cascade can be involved in HLVd replication as for other viroids of the family Pospiviroidae.

20.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638943

ABSTRACT

(1) Background: empagliflozin, sodium-glucose co-transporter 2 (SGLT-2) inhibitor, is an effective antidiabetic agent with strong cardio- and nephroprotective properties. The mechanisms behind its cardio- and nephroprotection are still not fully clarified. (2) Methods: we used male hereditary hypertriglyceridemic (hHTG) rats, a non-obese model of dyslipidaemia, insulin resistance, and endothelial dysfunction fed standard diet with or without empagliflozin for six weeks to explore the molecular mechanisms of empagliflozin effects. Nuclear magnetic resonance (NMR)-based metabolomics; quantitative PCR of relevant genes involved in lipid and glucose metabolism, or senescence; glucose and palmitic acid oxidation in isolated tissues and cell lines of adipocytes and hepatocytes were used. (3) Results: empagliflozin inhibited weight gain and decreased adipose tissue weight, fasting blood glucose, and triglycerides and increased HDL-cholesterol. It also improved insulin sensitivity in white fat. NMR spectroscopy identified higher plasma concentrations of ketone bodies, ketogenic amino acid leucine and decreased levels of pyruvate and alanine. In the liver, adipose tissue and kidney, empagliflozin up-regulated expression of genes involved in gluconeogenesis and down-regulated expression of genes involved in lipogenesis along with reduction of markers of inflammation, oxidative stress and cell senescence. (4) Conclusion: multiple positive effects of empagliflozin, including reduced cell senescence and oxidative stress, could contribute to its long-term cardio- and nephroprotective actions.


Subject(s)
Adipose Tissue/metabolism , Benzhydryl Compounds/administration & dosage , Cellular Senescence/drug effects , Gluconeogenesis/drug effects , Glucosides/administration & dosage , Hypertriglyceridemia/drug therapy , Hypertriglyceridemia/metabolism , Hypoglycemic Agents/administration & dosage , Kidney/metabolism , Lipogenesis/drug effects , Liver/metabolism , Oxidative Stress/drug effects , Sodium-Glucose Transporter 2 Inhibitors/administration & dosage , 3T3-L1 Cells , Administration, Oral , Animals , Cell Survival/drug effects , Disease Models, Animal , Down-Regulation/drug effects , Dyslipidemias/drug therapy , Gluconeogenesis/genetics , Hep G2 Cells , Humans , Insulin Resistance , Lipogenesis/genetics , Male , Mice , Rats , Treatment Outcome , Up-Regulation/drug effects , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL