Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
J Labelled Comp Radiopharm ; 67(9): 308-313, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982015

ABSTRACT

Due to the continuous rise in global incidence and severity of invasive fungal infections (IFIs), particularly among immunocompromised and immunodeficient patients, there is an urgent demand for swift and accurate fungal pathogen diagnosis. Therefore, the need for fungal-specific positron emission tomography (PET) imaging agents that can detect the infection in the early stages is increasing. Cellobiose, a disaccharide, is readily metabolized by fungal pathogens such as Aspergillus species. Recently, our group reported fluorine-18 labeled cellobiose, 2-deoxy-2-[18F]fluorocellobiose ([18F]FCB), for specific imaging of Aspergillus infection. The positive imaging findings with very low background signal on delayed imaging make this ligand a promising fungal-specific imaging ligand. Inspired by this result, the decision was made to automate the radiolabeling procedure for better reproducibility and to facilitate clinical translation. A Trasis AllInOne (Trasis AIO) automated module was used for this purpose. The reagent vials contain commercially available 2-deoxy-2-[18F]fluoroglucose ([18F]FDG), glucose-1-phosphate, and enzyme (cellobiose phosphorylase). A Sep-Pak cartridge was used to purify the tracer. The overall radiochemical yield was 50%-70% (n = 6, decay corrected) in 75-min synthesis time with a radiochemical purity of > 98%. This is a highly reliable protocol to produce current good manufacturing practice (cGMP)-compliant [18F]FCB for clinical PET imaging.


Subject(s)
Cellobiose , Cellobiose/chemical synthesis , Cellobiose/chemistry , Cellobiose/analogs & derivatives , Chemistry Techniques, Synthetic , Automation , Radiochemistry
2.
Angew Chem Int Ed Engl ; : e202407349, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829568

ABSTRACT

Real-time visualization of metabolic processes in vivo provides crucial insights into conditions like cancer and metabolic disorders. Metabolic magnetic resonance imaging (MRI), by amplifying the signal of pyruvate molecules through hyperpolarization, enables non-invasive monitoring of metabolic fluxes, aiding in understanding disease progression and treatment response. Signal Amplification By Reversible Exchange (SABRE) presents a simpler, cost-effective alternative to dissolution dynamic nuclear polarization, eliminating the need for expensive equipment and complex procedures. We present the first in vivo demonstration of metabolic sensing in a human pancreatic cancer xenograft model compared to healthy mice. A novel perfluorinated Iridium SABRE catalyst in a fluorinated solvent and methanol blend facilitated this breakthrough with a 1.2-fold increase in [1-13C]pyruvate SABRE hyperpolarization. The perfluorinated moiety allowed easy separation of the heavy-metal-containing catalyst from the hyperpolarized [1-13C]pyruvate target. The perfluorinated catalyst exhibited recyclability, maintaining SABRE-SHEATH activity through subsequent hyperpolarization cycles with minimal activity loss after the initial two cycles. Remarkably, the catalyst retained activity for at least 10 cycles, with a 3.3-fold decrease in hyperpolarization potency. This proof-of-concept study encourages wider adoption of SABRE hyperpolarized [1-13C]pyruvate MR for studying in vivo metabolism, aiding in diagnosing stages and monitoring treatment responses in cancer and other diseases.

3.
Molecules ; 29(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930845

ABSTRACT

An untargeted metabolomic study identified four potential lung cancer diagnostic biomarkers in human urine. One of the potential biomarkers was an unidentified feature possessing a m/z value of 561+. "561+" was isolated from human urine and tentatively identified as 27-nor-5ß-cholestane-3α,7α,12α,24,25 pentol glucuronide with unknown C24,25 stereochemistry using 1H NMR and mass spectrometry. In a prior report, the C24,25 stereochemistry of the aglycone, 27-nor-5ß-cholestane-3α,7α,12α,24,25 pentol, was found to be 24S,25R through GC analysis of the acetonide-TMS derivative. An authentic sample was prepared and found not to have the same stereochemistry as "561+". To identify the C24,25 stereochemistry, four C24,C25 diastereoisomeric alcohols of 27-nor-5ß-cholestane-3α,7α,12α,24,25 pentol were prepared from chiral amino acids. Using an LCMS method, the C24,C25 stereochemistry of the "561+" aglycone was determined to be 24R,25S. With the correct aglycone in hand, it was coupled with glucuronic acid to complete the first reported synthesis of 27-nor-5ß-cholestane-3α,7α,12α,24R,25S pentol glucuronide. Deuterium labeled 27-nor-5ß-cholestane-3α,7α,12α,24R,25S pentol was also synthesized for use as an internal standard for MS quantitation.


Subject(s)
Biomarkers, Tumor , Glucuronides , Lung Neoplasms , Humans , Lung Neoplasms/urine , Lung Neoplasms/diagnosis , Biomarkers, Tumor/urine , Glucuronides/urine , Glucuronides/chemistry , Deuterium/chemistry , Male , Female
4.
Nat Commun ; 15(1): 5239, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937448

ABSTRACT

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - is a mechanism-based reporter of Mycobacteria-selective enzyme activity in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-mediated processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-selective candidate for clinical evaluation. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either custom-made radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.


Subject(s)
Mycobacterium tuberculosis , Positron-Emission Tomography , Trehalose , Tuberculosis , Animals , Mycobacterium tuberculosis/metabolism , Positron-Emission Tomography/methods , Trehalose/metabolism , Tuberculosis/diagnostic imaging , Tuberculosis/microbiology , Tuberculosis/metabolism , Humans , Mice , Fluorine Radioisotopes , Fluorodeoxyglucose F18/metabolism , Fluorodeoxyglucose F18/chemistry , Radiopharmaceuticals/metabolism , Disease Models, Animal , Female
5.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746397

ABSTRACT

The transcriptional coactivators EP300 and CREBBP are critical regulators of gene expression that share high sequence identity but exhibit non-redundant functions in basal and pathological contexts. Here, we report the development of a bifunctional small molecule, MC-1, capable of selectively degrading EP300 over CREBBP. Using a potent aminopyridine-based inhibitor of the EP300/CREBBP catalytic domain in combination with a VHL ligand, we demonstrate that MC-1 preferentially degrades EP300 in a proteasome-dependent manner. Mechanistic studies reveal that selective degradation cannot be predicted solely by target engagement or ternary complex formation, suggesting additional factors govern paralogue-specific degradation. MC-1 inhibits cell proliferation in a subset of cancer cell lines and provides a new tool to investigate the non-catalytic functions of EP300 and CREBBP. Our findings expand the repertoire of EP300/CREBBP-targeting chemical probes and offer insights into the determinants of selective degradation of highly homologous proteins.

6.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38675440

ABSTRACT

Desferrioxamine B (DFO) is the clinical standard chelator for preparing zirconium-89 labeled antibodies. In the current study, the stabilities of a zirconium-89 labeled panitumumab (PAN; Vectibix®) with three different chelators (DFO, DFO*, and DOTA) were compared. PAN is an anti-HER1/EGFR monoclonal antibody approved by the FDA for the treatment of HER1-expressing colorectal cancers and was used as the model antibody for this study. DFO/DFO* conjugates of PAN were directly radiolabeled with zirconium-89 at room temperature to produce [89Zr]Zr-DFO/DFO*-PAN conjugates following a well-established procedure. A zirconium-89 labeled DOTA-PAN conjugate was prepared by an indirect radiolabeling method. A cyclooctyne-linked DOTA chelator (BCN-DOTA-GA) was first radiolabeled with zirconium-89 at 90 °C under a two-step basic pH adjustment method followed by conjugation with PAN-tetrazene at 37 °C to produce a labeled conjugate, BCN-[89Zr]Zr-DOTA-GA-PAN. High reproducibility of the radiolabeling was observed via this two-step basic pH adjustment. The overall radiochemical yield was 40-50% (n = 12, decay uncorrected) with a radiochemical purity of >95% in 2 h synthesis time. All three conjugates were stable in whole human serum for up to 7 days at 37 °C. The kinetic inertness of the conjugates was assessed against the EDTA challenge. BCN-[89Zr]Zr-DOTA-GA-PAN exhibited excellent inertness followed by [89Zr]Zr-DFO*-PAN. [89Zr]Zr-DFO-PAN displayed the lowest level of inertness.

7.
Adv Sci (Weinh) ; 11(18): e2308312, 2024 May.
Article in English | MEDLINE | ID: mdl-38447164

ABSTRACT

Here, an in vitro characterization of a family of prazole derivatives that covalently bind to the C73 site on Tsg101 and assay their ability to inhibit viral particle production is presented. Structurally, increased steric bulk on the 4-pyridyl of the prazole expands the prazole site on the UEV domain toward the ß-hairpin in the Ub-binding site and is coupled to increased inhibition of virus-like particle production in HIV-1. Increased bulk also increased toxicity, which is alleviated by increasing flexibility. Further, the formation of a novel secondary Tsg101 adduct for several of the tested compounds and the commercial drug lansoprazole. The secondary adduct involved the loss of the 4-pyridyl substituent to form an irreversible species, with implications for increasing the half-life of the active species or its specificity toward Tsg101 UEV. It is also determined that sulfide derivatives display effective viral inhibition, presumably through cellular sulfoxidation, allowing for delayed conversion within the cellular environment, and identify SARS-COV-2 as a target of prazole inhibition. These results open multiple avenues for the design of prazole derivatives for antiviral applications.


Subject(s)
Antiviral Agents , HIV-1 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , HIV-1/drug effects , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/chemistry , Structure-Activity Relationship , COVID-19 Drug Treatment , Virus Replication/drug effects
8.
Nat Commun ; 15(1): 2485, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509117

ABSTRACT

Proteasome subunit hRpn13 is partially proteolyzed in certain cancer cell types to generate hRpn13Pru by degradation of its UCHL5/Uch37-binding DEUBAD domain and retention of an intact proteasome- and ubiquitin-binding Pru domain. By using structure-guided virtual screening, we identify an hRpn13 binder (XL44) and solve its structure ligated to hRpn13 Pru by integrated X-ray crystallography and NMR to reveal its targeting mechanism. Surprisingly, hRpn13Pru is depleted in myeloma cells following treatment with XL44. TMT-MS experiments reveal a select group of off-targets, including PCNA clamp-associated factor PCLAF and ribonucleoside-diphosphate reductase subunit M2 (RRM2), that are similarly depleted by XL44 treatment. XL44 induces hRpn13-dependent apoptosis and also restricts cell viability by a PCLAF-dependent mechanism. A KEN box, but not ubiquitination, is required for XL44-induced depletion of PCLAF. Here, we show that XL44 induces ubiquitin-dependent loss of hRpn13Pru and ubiquitin-independent loss of select KEN box containing proteins.


Subject(s)
Membrane Glycoproteins , Proteasome Endopeptidase Complex , Proteasome Endopeptidase Complex/metabolism , Membrane Glycoproteins/metabolism , Intracellular Signaling Peptides and Proteins , Ubiquitin/metabolism , Cytoplasm/metabolism , Transcription Factors
9.
Cell Chem Biol ; 31(2): 326-337.e11, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38016478

ABSTRACT

PIM kinases have important pro-tumorigenic roles and mediate several oncogenic traits, including cell proliferation, survival, and chemotherapeutic resistance. As a result, multiple PIM inhibitors have been pursued as investigational new drugs in cancer; however, response to PIM inhibitors in solid tumors has fallen short of expectations. We found that inhibition of PIM kinase activity stabilizes protein levels of all three PIM isoforms (PIM1/2/3), and this can promote resistance to PIM inhibitors and chemotherapy. To overcome this effect, we designed PIM proteolysis targeting chimeras (PROTACs) to target PIM for degradation. PIM PROTACs effectively downmodulated PIM levels through the ubiquitin-proteasome pathway. Importantly, degradation of PIM kinases was more potent than inhibition of catalytic activity at inducing apoptosis in prostate cancer cell line models. In conclusion, we provide evidence of the advantages of degrading PIM kinases versus inhibiting their catalytic activity to target the oncogenic functions of PIM kinases.


Subject(s)
Drug Resistance, Neoplasm , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Phosphorylation , Apoptosis , Cell Proliferation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-pim-1
10.
J Am Chem Soc ; 146(1): 946-953, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38154120

ABSTRACT

Hyperpolarized (HP) carbon-13 [13C] enables the specific investigation of dynamic metabolic and physiologic processes via in vivo MRI-based molecular imaging. As the leading HP metabolic agent, [1-13C]pyruvate plays a pivotal role due to its rapid tissue uptake and central role in cellular energetics. Dissolution dynamic nuclear polarization (d-DNP) is considered the gold standard method for the production of HP metabolic probes; however, development of a faster, less expensive technique could accelerate the translation of metabolic imaging via HP MRI to routine clinical use. Signal Amplification by Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) achieves rapid hyperpolarization by using parahydrogen (p-H2) as the source of nuclear spin order. Currently, SABRE is clinically limited due to the toxicity of the iridium catalyst, which is crucial to the SABRE process. To mitigate Ir contamination, we introduce a novel iteration of the SABRE catalyst, incorporating bis(polyfluoroalkylated) imidazolium salts. This novel perfluorinated SABRE catalyst retained polarization properties while exhibiting an enhanced hydrophobicity. This modification allows the easy removal of the perfluorinated SABRE catalyst from HP [1-13C]-pyruvate after polarization in an aqueous solution, using the ReD-SABRE protocol. The residual Ir content after removal was measured via ICP-MS at 177 ppb, which is the lowest reported to date for pyruvate and is sufficiently safe for use in clinical investigations. Further improvement is anticipated once automated processes for delivery and recovery are initiated. SABRE-SHEATH using the perfluorinated SABRE catalyst can become an attractive low-cost alternative to d-DNP to prepare biocompatible HP [1-13C]-pyruvate formulations for in vivo applications in next-generation molecular imaging modalities.


Subject(s)
Iridium , Pyruvic Acid , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging , Water
11.
Mol Cell ; 84(3): 522-537.e8, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38151017

ABSTRACT

The anti-cancer target hRpn13 is a proteasome substrate receptor. However, hRpn13-targeting molecules do not impair its interaction with proteasomes or ubiquitin, suggesting other critical cellular activities. We find that hRpn13 depletion causes correlated proteomic and transcriptomic changes, with pronounced effects in myeloma cells for cytoskeletal and immune response proteins and bone-marrow-specific arginine deiminase PADI4. Moreover, a PROTAC against hRpn13 co-depletes PADI4, histone deacetylase HDAC8, and DNA methyltransferase MGMT. PADI4 binds and citrullinates hRpn13 and proteasomes, and proteasomes from PADI4-inhibited myeloma cells exhibit reduced peptidase activity. When off proteasomes, hRpn13 can bind HDAC8, and this interaction inhibits HDAC8 activity. Further linking hRpn13 to transcription, its loss reduces nuclear factor κB (NF-κB) transcription factor p50, which proteasomes generate by cleaving its precursor protein. NF-κB inhibition depletes hRpn13 interactors PADI4 and HDAC8. Altogether, we find that hRpn13 acts dually in protein degradation and expression and that proteasome constituency and, in turn, regulation varies by cell type.


Subject(s)
Histone Deacetylases , Intracellular Signaling Peptides and Proteins , NF-kappa B , Protein-Arginine Deiminase Type 4 , Transcription Factors , Humans , Epigenesis, Genetic , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteome/metabolism , Proteomics , Repressor Proteins/metabolism , Transcription Factors/metabolism , Transcriptome , Intracellular Signaling Peptides and Proteins/metabolism , Protein-Arginine Deiminase Type 4/metabolism , Cell Line, Tumor
12.
iScience ; 26(12): 108411, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38047069

ABSTRACT

Very-long-chain polyunsaturated fatty acids (VLCPUFAs; C24-38) constitute a unique class of PUFA that have important biological roles, but the lack of a suitable dietary source has limited research in this field. We produced an n-3 C24-28-rich VLCPUFA-oil concentrated from fish oil to study its bioavailability and physiological functions in C57BL/6J mice. The serum and retinal C24:5 levels increased significantly compared to control after a single-dose gavage, and VLCPUFAs were incorporated into the liver, brain, and eyes after 8-week supplementation. Dietary VLCPUFAs resulted in favorable cardiometabolic changes, and improved electroretinography responses and visual performance. VLCPUFA supplementation changed the expression of genes involved in PPAR signaling pathways. Further in vitro studies demonstrated that the VLCPUFA-oil and chemically synthesized C24:5 are potent agonists for PPARs. The multiple potential beneficial effects of fish oil-derived VLCPUFAs on cardiometabolic risk and eye health in mice support future efforts to develop VLCPUFA-oil into a supplemental therapy.

13.
Front Mol Biosci ; 10: 1286690, 2023.
Article in English | MEDLINE | ID: mdl-38143802

ABSTRACT

Metabolic chemical reporters (MCRs) provide easily accessible means to study glycans in their native environments. However, because monosaccharide precursors are shared by many glycosylation pathways, selective incorporation has been difficult to attain. Here, a strategy for defining the selectivity and enzymatic incorporation of an MCR is presented. Performing ß-elimination to interrogate O-linked sugars and using commercially available glycosidases and glycosyltransferase inhibitors, we probed the specificity of widely used azide (Ac4GalNAz) and alkyne (Ac4GalNAlk and Ac4GlcNAlk) sugar derivatives. Following the outlined strategy, we provide a semiquantitative assessment of the specific and non-specific incorporation of this bioorthogonal sugar (Ac4GalNAz) into numerous N- and O-linked glycosylation pathways. This approach should be generally applicable to other MCRs to define the extent of incorporation into the various glycan species.

14.
Cell Rep ; 42(12): 113503, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38019654

ABSTRACT

CD276/B7-H3 represents a promising target for cancer therapy based on widespread overexpression in both cancer cells and tumor-associated stroma. In previous preclinical studies, CD276 antibody-drug conjugates (ADCs) exploiting a talirine-type pyrrolobenzodiazepine (PBD) payload showed potent activity against various solid tumors but with a narrow therapeutic index and dosing regimen higher than that tolerated in clinical trials using other antibody-talirine conjugates. Here, we describe the development of a modified talirine PBD-based fully human CD276 ADC, called m276-SL-PBD, that is cross-species (human/mouse) reactive and can eradicate large 500-1,000-mm3 triple-negative breast cancer xenografts at doses 10- to 40-fold lower than the maximum tolerated dose. By combining CD276 targeting with judicious genetic and chemical ADC engineering, improved ADC purification, and payload sensitivity screening, these studies demonstrate that the therapeutic index of ADCs can be substantially increased, providing an advanced ADC development platform for potent and selective targeting of multiple solid tumor types.


Subject(s)
Immunoconjugates , Neoplasms , Humans , Mice , Animals , Immunoconjugates/pharmacology , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antibodies, Monoclonal, Humanized , Transcription Factors , Neoplasms/drug therapy , B7 Antigens
15.
Neurooncol Adv ; 5(1): vdad143, 2023.
Article in English | MEDLINE | ID: mdl-38024238

ABSTRACT

Background: Mutant isocitrate dehydrogenase (IDHmut) catalyzes 2-hydroxyglutarate (2HG) production and is considered a therapeutic target for IDHmut tumors. However, response is mostly associated with inhibition of tumor growth. Response assessment via anatomic imaging is therefore challenging. Our goal was to directly detect IDHmut inhibition using a new hyperpolarized (HP) 13C magnetic resonance spectroscopy-based approach to noninvasively assess α-ketoglutarate (αKG) metabolism to 2HG and glutamate. Methods: We studied IDHmut-expressing normal human astrocyte (NHAIDH1mut) cells and rats with BT257 tumors, and assessed response to the IDHmut inhibitor BAY-1436032 (n ≥ 4). We developed a new 13C Echo Planar Spectroscopic Imaging sequence with an optimized RF pulse to monitor the fate of HP [1-13C]αKG and [5-12C,1-13C]αKG with a 2.5 × 2.5 × 8 mm3 spatial resolution. Results: Cell studies confirmed that BAY-1436032-treatment leads to a drop in HP 2HG and an increase in HP glutamate detectable with both HP substrates. Data using HP [5-12C,1-13C]αKG also demonstrated that its conversion to 2HG is detectable without the proximal 1.1% natural abundance [5-13C]αKG signal. In vivo studies showed that glutamate is produced in normal brains but no 2HG is detectable. In tumor-bearing rats, we detected the production of both 2HG and glutamate, and BAY-1436032-treatment led to a drop in 2HG and an increase in glutamate. Using HP [5-12C,1-13C]αKG we detected metabolism with an signal-to-noise ratio of 23 for 2HG and 17 for glutamate. Conclusions: Our findings point to the clinical potential of HP αKG, which recently received FDA investigational new drug approval for research, for noninvasive localized imaging of IDHmut status.

16.
J Am Chem Soc ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37906952

ABSTRACT

NMR spectroscopy has been applied to virtually all sites within proteins and biomolecules; however, the observation of sulfur sites remains very challenging. Recent studies have examined 77Se as a replacement for sulfur and applied 77Se NMR in both the solution and solid states. As a spin-1/2 nuclide, 77Se is attractive as a probe of sulfur sites, and it has a very large chemical shift range (due to a large chemical shift anisotropy), which makes it potentially very sensitive to structural and/or binding interactions as well as dynamics. Despite being a spin-1/2 nuclide, there have been rather limited studies of 77Se, and the ability to use 1H-indirect detection has been sparse. Some examples exist, but in the absence of a directly bonded, nonexchangeable 1H, these have been largely limited to smaller molecules. We develop and illustrate approaches using double-labeling of 13C and 77Se in proteins that enable more sensitive triple-resonance schemes via multistep coherence transfers and 1H-detection. These methods require specialized hardware and decoupling schemes, which we developed and will be discussed.

17.
J Am Chem Soc ; 145(41): 22287-22292, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37774000

ABSTRACT

Protein palmitoylation, with more than 5000 substrates, is the most prevalent form of protein lipidation. Palmitoylated proteins participate in almost all areas of cellular physiology and have been linked to several human diseases. Twenty-three zDHHC enzymes catalyze protein palmitoylation with extensive overlap among the substrates of each zDHHC member. Currently, there is no global strategy to delineate the physiological substrates of individual zDHHC enzymes without perturbing the natural cellular pool. Here, we outline a general approach to accomplish this on the basis of synthetic orthogonal substrates that are only compatible with engineered zDHHC enzymes. We demonstrate the utility of this strategy by validating known substrates and use it to identify novel substrates of two human zDHHC enzymes. Finally, we employ this method to discover and explore conserved palmitoylation in a family of host restriction factors against pathogenic viruses, including SARS-CoV-2.


Subject(s)
Acyltransferases , COVID-19 , Humans , Acyltransferases/metabolism , Substrate Specificity , SARS-CoV-2/metabolism , Proteins/metabolism , Lipoylation
18.
J Biol Chem ; 299(9): 105099, 2023 09.
Article in English | MEDLINE | ID: mdl-37507014

ABSTRACT

Methionine sulfoxide reductases (MSRs) are key enzymes in the cellular oxidative defense system. Reactive oxygen species oxidize methionine residues to methionine sulfoxide, and the methionine sulfoxide reductases catalyze their reduction back to methionine. We previously identified the cholesterol transport protein STARD3 as an in vivo binding partner of MSRA (methionine sulfoxide reductase A), an enzyme that reduces methionine-S-sulfoxide back to methionine. We hypothesized that STARD3 would also bind the cytotoxic cholesterol hydroperoxides and that its two methionine residues, Met307 and Met427, could be oxidized, thus detoxifying cholesterol hydroperoxide. We now show that in addition to binding MSRA, STARD3 binds all three MSRB (methionine sulfoxide reductase B), enzymes that reduce methionine-R-sulfoxide back to methionine. Using pure 5, 6, and 7 positional isomers of cholesterol hydroperoxide, we found that both Met307 and Met427 on STARD3 are oxidized by 6α-hydroperoxy-3ß-hydroxycholest-4-ene (cholesterol-6α-hydroperoxide) and 7α-hydroperoxy-3ß-hydroxycholest-5-ene (cholesterol-7α-hydroperoxide). MSRs reduce the methionine sulfoxide back to methionine, restoring the ability of STARD3 to bind cholesterol. Thus, the cyclic oxidation and reduction of methionine residues in STARD3 provides a catalytically efficient mechanism to detoxify cholesterol hydroperoxide during cholesterol transport, protecting membrane contact sites and the entire cell against the toxicity of cholesterol hydroperoxide.


Subject(s)
Cholesterol , Hydrogen Peroxide , Membrane Proteins , Methionine Sulfoxide Reductases , Cholesterol/analogs & derivatives , Cholesterol/metabolism , Hydrogen Peroxide/metabolism , Methionine/metabolism , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , Oxidation-Reduction , Sulfoxides/metabolism , HEK293 Cells , HeLa Cells , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Endosomes/metabolism , Lysosomes/metabolism
19.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37333343

ABSTRACT

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - can act as a mechanism-based enzyme reporter in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-specific processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-specific, clinical diagnostic candidate. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either bespoke radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.

20.
Molecules ; 28(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175182

ABSTRACT

The use of radiolabeled glucose for PET imaging resulted in the most commonly used tracer in the clinic, 2-deoxy-2-[18F]fluoroglucose (FDG). More recently, other radiolabeled sugars have been reported for various applications, including imaging tumors and infections. Therefore, in this study, we developed a series of fluorine-18-labeled L-rhamnose derivatives as potential PET tracers of various fungal and bacterial strains. Acetyl-protected triflate precursors of rhamnose were prepared and radiolabeled with fluorine-18 followed by hydrolysis to produce L-deoxy [18F]fluororhamnose. The overall radiochemical yield was 7-27% in a 90 min synthesis time with a radiochemical purity of 95%. In vivo biodistribution of the ligands using PET imaging showed that 2-deoxy-2-[18F]fluoro-L-rhamnose is stable for at least up to 60 min in mice and eliminated via renal clearance. The tracer also exhibited minimal tissue or skeletal uptake in healthy mice resulting in a low background signal.


Subject(s)
Fluorine Radioisotopes , Rhamnose , Mice , Animals , Tissue Distribution , Cell Line, Tumor , Positron-Emission Tomography/methods , Radiopharmaceuticals
SELECTION OF CITATIONS
SEARCH DETAIL