Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4768, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849336

ABSTRACT

Parvalbumin (PV)-expressing GABAergic neurons of the basal forebrain (BFPVNs) were proposed to serve as a rapid and transient arousal system, yet their exact role in awake behaviors remains unclear. We performed bulk calcium measurements and electrophysiology with optogenetic tagging from the horizontal limb of the diagonal band of Broca (HDB) while male mice were performing an associative learning task. BFPVNs responded with a distinctive, phasic activation to punishment, but showed slower and delayed responses to reward and outcome-predicting stimuli. Optogenetic inhibition during punishment impaired the formation of cue-outcome associations, suggesting a causal role of BFPVNs in associative learning. BFPVNs received strong inputs from the hypothalamus, the septal complex and the median raphe region, while they synapsed on diverse cell types in key limbic structures, where they broadcasted information about aversive stimuli. We propose that the arousing effect of BFPVNs is recruited by aversive stimuli to serve crucial associative learning functions.


Subject(s)
Basal Forebrain , GABAergic Neurons , Optogenetics , Parvalbumins , Animals , Parvalbumins/metabolism , Basal Forebrain/metabolism , Basal Forebrain/physiology , Male , Mice , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Reward , Punishment , Mice, Inbred C57BL , Learning/physiology , Neurons/metabolism , Neurons/physiology , Association Learning/physiology
2.
Forensic Sci Int ; 349: 111778, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37437415

ABSTRACT

In principle, new psychoactive substances (NPSs) are produced to circumvent drug regulations. However, the mixed success of regulatory efforts suggests that the dynamics of marketing is incompletely understood. To address this issue, we conducted a comprehensive study on the marketing of all synthetic cannabinoids and cathinones present in Hungary over ten years. Market evaluation was based on drug seizure data and chemical analyses provided by the Hungarian Institute for Forensic Sciences. Over ten years, 18 synthetic cannabinoids and 11 cathinones were identified. Total seizure counts were 22,906 and 10,273, respectively. When new synthetic cannabinoids emerged, seizures increased exponentially, but rapidly declined after their banning. In parallel, new synthetic cannabinoids emerged on the market. The systematic monitoring of local legislation allowed large sales between market introduction and legal control. Cathinones were also marketed in successive waves, but trading intensity was not associated with local regulations. Sales remained low throughout, likely because the risks involved by the temporal mismatch between marketing and legal control. One can hypothesize that marketing was driven by general trends in EU regulations or by measures taken by large countries. Our findings imply the existence of two different strategies for NPS marketing. The choice between the two may depend on multiple factors from the availability of skills required by rapid marketing adjustments to cost/benefit evaluations for various market segments. Studying NPS market strategies in neighboring and distant EU countries may help analyzing and predicting market events.

3.
J Cereb Blood Flow Metab ; 42(4): 584-599, 2022 04.
Article in English | MEDLINE | ID: mdl-34427145

ABSTRACT

Spreading depolarizations (SDs) indicate injury progression and predict worse clinical outcome in acute brain injury. We demonstrate in rodents that acute brain swelling upon cerebral ischemia impairs astroglial glutamate clearance and increases the tissue area invaded by SD. The cytotoxic extracellular glutamate accumulation (>15 µM) predisposes an extensive bulk of tissue (4-5 mm2) for a yet undescribed simultaneous depolarization (SiD). We confirm in rat brain slices exposed to osmotic stress that SiD is the pathological expansion of prior punctual SD foci (0.5-1 mm2), is associated with astrocyte swelling, and triggers oncotic neuron death. The blockade of astrocytic aquaporin-4 channels and Na+/K+/Cl- co-transporters, or volume-regulated anion channels mitigated slice edema, extracellular glutamate accumulation (<10 µM) and SiD occurrence. Reversal of slice swelling by hyperosmotic mannitol counteracted glutamate accumulation and prevented SiD. In contrast, inhibition of glial metabolism or inhibition of astrocyte glutamate transporters reproduced the SiD phenotype. Finally, we show in the rodent water intoxication model of cytotoxic edema that astrocyte swelling and altered astrocyte calcium waves are central in the evolution of SiD. We discuss our results in the light of evidence for SiD in the human cortex. Our results emphasize the need of preventive osmotherapy in acute brain injury.


Subject(s)
Brain Edema , Brain Injuries , Animals , Rats , Astrocytes/metabolism , Brain Edema/pathology , Brain Injuries/metabolism , Edema/metabolism , Glutamic Acid/metabolism , Sodium-Potassium-Chloride Symporters/metabolism
4.
Neuropharmacology ; 192: 108612, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34023338

ABSTRACT

Dimethyltryptamine (DMT), an endogenous ligand of sigma-1 receptors (Sig-1Rs), acts against systemic hypoxia, but whether DMT may prevent cerebral ischemic injury is unexplored. Here global forebrain ischemia was created in anesthetized rats and aggravated with the induction of spreading depolarizations (SDs) and subsequent short hypoxia before reperfusion. Drugs (DMT, the selective Sig-1R agonist PRE-084, the Sig-1R antagonist NE-100, or the serotonin receptor antagonist asenapine) were administered intravenously alone or in combination while physiological variables and local field potential from the cerebral cortex was recorded. Neuroprotection and the cellular localization of Sig-1R were evaluated with immunocytochemistry. Plasma and brain DMT content was measured by 2D-LC-HRMS/MS. The affinity of drugs for cerebral Sig-1R was evaluated with a radioligand binding assay. Both DMT and PRE-084 mitigated SDs, counteracted with NE-100. Further, DMT attenuated SD when co-administered with asenapine, compared to asenapine alone. DMT reduced the number of apoptotic and ferroptotic cells and supported astrocyte survival. The binding affinity of DMT to Sig-1R matched previously reported values. Sig-1Rs were associated with the perinuclear cytoplasm of neurons, astrocytes and microglia, and with glial processes. According to these data, DMT may be considered as adjuvant pharmacological therapy in the management of acute cerebral ischemia.


Subject(s)
Brain Ischemia/metabolism , Brain/metabolism , Cortical Spreading Depression/drug effects , N,N-Dimethyltryptamine/pharmacology , Neurodegenerative Diseases/metabolism , Receptors, sigma/metabolism , Animals , Brain/drug effects , Brain Ischemia/drug therapy , Cortical Spreading Depression/physiology , Dose-Response Relationship, Drug , Male , N,N-Dimethyltryptamine/therapeutic use , Neurodegenerative Diseases/prevention & control , Rats , Rats, Sprague-Dawley , Receptors, sigma/agonists , Sigma-1 Receptor
5.
J Pharm Biomed Anal ; 191: 113615, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-32942106

ABSTRACT

The orthogonal heart-cutting liquid chromatography (LC) modes coupled to high-resolution tandem mass spectrometry (HRMS/MS) provide a number of possibilities to enhance selectivity and sensitivity for the determination of targeted compounds in complex biological matricies. Here we report the development of a new fast 2D-LC-(HRMS/MS) method and its successful application for quantitative determination of the level of plasma and brain N,N-dimethyltriptamine (DMT) using α-methyltryptamine (AMT) as internal standard in an experimental model of cerebral ischemia/reperfusion using DMT administration. The 2D-LC separation was carried out by a combination of hydrophilic interaction liquid chromatography (HILIC) in the first dimension followed by second-dimensional reversed-phase (RP) chromatography within a total run time of 10 min. The enrichment of HILIC effluent of interest containing DMT was performed using a C18 trapping column. During method development several parameters of sample preparation procedures, chromatographic separation and mass spectrometric detection were optimised to achieve high DMT recovery (plasma: 90 %, brain: 88 %) and sensitivity (plasma: 0.108 ng/mL of LOD, brain: 0.212 ng/g of LOD) applying targeted analytical method with strict LC and HRMSMS confirmatory criteria. Concerning rat plasma sample, the concentration of DMT before hypoxia (49.3-114.3 ng/mL plasma) was generally higher than that after hypoxia (10.6-96.1 ng/mL plasma). After treatment, the concentration of DMT in brain was elevated up to the range of 2-6.1 ng/g. Overall, our analytical approach is suitable to detect and confirm the presence of DMT administered to experimental animals with therapeutic purpose in a reliable manner.


Subject(s)
N,N-Dimethyltryptamine , Tandem Mass Spectrometry , Animals , Brain , Chromatography, Liquid , Chromatography, Reverse-Phase , Rats
6.
Neurobiol Dis ; 137: 104780, 2020 04.
Article in English | MEDLINE | ID: mdl-31991249

ABSTRACT

Spontaneous, recurrent spreading depolarizations (SD) are increasingly more appreciated as a pathomechanism behind ischemic brain injuries. Although the prostaglandin F2α - FP receptor signaling pathway has been proposed to contribute to neurodegeneration, it has remained unexplored whether FP receptors are implicated in SD or the coupled cerebral blood flow (CBF) response. We set out here to test the hypothesis that FP receptor blockade may achieve neuroprotection by the inhibition of SD. Global forebrain ischemia/reperfusion was induced in anesthetized rats by the bilateral occlusion and later release of the common carotid arteries. An FP receptor antagonist (AL-8810; 1 mg/bwkg) or its vehicle were administered via the femoral vein 10 min later. Two open craniotomies on the right parietal bone served the elicitation of SD with 1 M KCl, and the acquisition of local field potential. CBF was monitored with laser speckle contrast imaging over the thinned parietal bone. Apoptosis and microglia activation, as well as FP receptor localization were evaluated with immunohistochemistry. The data demonstrate that the antagonism of FP receptors suppressed SD in the ischemic rat cerebral cortex and reduced the duration of recurrent SDs by facilitating repolarization. In parallel, FP receptor antagonism improved perfusion in the ischemic cerebral cortex, and attenuated hypoemic CBF responses associated with SD. Further, FP receptor antagonism appeared to restrain apoptotic cell death related to SD recurrence. In summary, the antagonism of FP receptors (located at the neuro-vascular unit, neurons, astrocytes and microglia) emerges as a promising approach to inhibit the evolution of SDs in cerebral ischemia.


Subject(s)
Brain Ischemia/drug therapy , Cerebrovascular Circulation/drug effects , Cortical Spreading Depression/drug effects , Dinoprost/analogs & derivatives , Animals , Brain Ischemia/physiopathology , Cerebral Cortex/drug effects , Cerebral Cortex/physiopathology , Cerebral Infarction/drug therapy , Cerebrovascular Circulation/physiology , Cortical Spreading Depression/physiology , Dinoprost/pharmacology , Male , Prosencephalon/drug effects , Prosencephalon/physiopathology , Prostaglandins/pharmacology , Rats, Sprague-Dawley , Signal Transduction/drug effects
7.
Neuropharmacology ; 162: 107850, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31715193

ABSTRACT

Stroke is an important cause of mortality and disability. Treatment options are limited, therefore the progress in this regard is urgently needed. Nimodipine, an L-type voltage-gated calcium channel antagonist dilates cerebral arterioles, but its systemic administration may cause potential side effects. We have previously constructed chitosan nanoparticles as drug carriers, which release nimodipine in response to decreasing pH typical of cerebral ischemia. Here we have set out to evaluate this nanomedical approach to deliver nimodipine selectively to acidic ischemic brain tissue. After washing a nanoparticle suspension with or without nimodipine (100 µM) on the exposed brain surface of anesthetized rats (n = 18), both common carotid arteries were occluded to create forebrain ischemia. Spreading depolarizations (SDs) were elicited by 1M KCl to deepen the ischemic insult. Local field potential, cerebral blood flow (CBF) and tissue pH were recorded from the cerebral cortex. Microglia activation and neuronal survival were evaluated in brain sections by immunocytochemistry. Ischemia-induced tissue acidosis initiated nimodipine release from nanoparticles, confirmed by the significant elevation of baseline CBF (47.8 ±â€¯23.7 vs. 29.3 ±â€¯6.96%). Nimodipine shortened the duration of both SD itself (48.07 ±â€¯23.29 vs. 76.25 ±â€¯17.2 s), and the associated tissue acidosis (65.46 ±â€¯20.2 vs. 138.3 ±â€¯66.07 s), moreover it enhanced the SD-related hyperemia (48.15 ±â€¯42.04 vs. 17.29 ±â€¯11.03%). Chitosan nanoparticles did not activate microglia. The data support the concept that tissue acidosis linked to cerebral ischemia can be employed as a trigger for targeted drug delivery. Nimodipine-mediated vasodilation and SD inhibition can be achieved by pH-responsive chitosan nanoparticles applied directly to the brain surface.


Subject(s)
Acidosis/metabolism , Brain Ischemia/metabolism , Calcium Channel Blockers/administration & dosage , Chitosan/metabolism , Microglia/drug effects , Nanoparticles/metabolism , Nimodipine/administration & dosage , Prosencephalon/drug effects , Acidosis/etiology , Animals , Biocompatible Materials , Brain Ischemia/complications , Brain Ischemia/pathology , Carotid Artery, Common , Cell Survival , Cerebrovascular Circulation , Cortical Spreading Depression/drug effects , Drug Carriers , Drug Delivery Systems , Hydrogen-Ion Concentration , Neurons/drug effects , Neurons/pathology , Prosencephalon/blood supply , Prosencephalon/pathology , Rats
8.
Br J Pharmacol ; 176(9): 1222-1234, 2019 05.
Article in English | MEDLINE | ID: mdl-30737967

ABSTRACT

BACKGROUND AND PURPOSE: A new class of dihydropyridine derivatives, which act as co-inducers of heat shock protein but are devoid of calcium channel antagonist and vasodilator effects, has recently been developed with the purpose of selectively targeting neurodegeneration. Here, we evaluated the action of one of these novel compounds LA1011 on neurovascular coupling in the ischaemic rat cerebral cortex. As a reference, we applied nimodipine, a vasodilator dihydropyridine and well-known calcium channel antagonist. EXPERIMENTAL APPROACH: Rats were treated with LA1011 or nimodipine, either by chronic, systemic (LA1011), or acute, local administration (LA1011 and nimodipine). In the latter treatment group, global forebrain ischaemia was induced in half of the animals by bilateral common carotid artery occlusion under isoflurane anaesthesia. Functional hyperaemia in the somatosensory cortex was created by mechanical stimulation of the contralateral whisker pad under α-chloralose anaesthesia. Spreading depolarization (SD) events were elicited subsequently by 1 M KCl. Local field potential and cerebral blood flow (CBF) in the parietal somatosensory cortex were monitored by electrophysiology and laser Doppler flowmetry. KEY RESULTS: LA1011 did not alter CBF, but intensified SD, presumably indicating the co-induction of heat shock proteins, and, perhaps an anti-inflammatory effect. Nimodipine attenuated evoked potentials and SD. In addition to the elevation of baseline CBF, nimodipine augmented hyperaemia in response to both somatosensory stimulation and SD, particularly under ischaemia. CONCLUSIONS AND IMPLICATIONS: In contrast to the CBF improvement achieved with nimodipine, LA1011 seems not to have discernible cerebrovascular effects but may up-regulate the stress response.


Subject(s)
Calcium Channel Blockers/pharmacology , Cerebrovascular Circulation/drug effects , Dihydropyridines/pharmacology , Somatosensory Cortex/drug effects , Animals , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...