Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Med Biol ; 64(12): 125007, 2019 06 12.
Article in English | MEDLINE | ID: mdl-30986778

ABSTRACT

This work aims at measuring experimentally proton induced secondary electron energy spectra after interaction with gold nano particles (GNPs) and polymer-coated GNPs. Backscattered electron energy spectra were collected over a 0 to 1000 eV energy range using a retarding field analyzer (RFA). This paper presents the spectra obtained for proton beam energies of 0.5 and 2 MeV and diameter 2.5 and 3.8 nm GNPs. The spectra were also measured for 3.8 nm GNPs after 5 and 10 MeV proton irradiations. GNPs were deposited on a 100 nm carbon film. Each experimental spectrum was compared with dedicated simulations based on existing numerical models used in the TRAX and Geant4 Monte Carlo codes. For 100 nm carbon target, good agreement between experimental, TRAX and Geant4 simulation results can be observed. For 3.8 nm GNPs, the TRAX simulations reproduce with good agreement the electron energy spectra produced after 0.5, 2, 5 and 10 MeV proton irradiations, while Geant4 spectra display a lower secondary electron yield at low energy (<600 eV) for all the studied energies. This underestimation can mostly be explained by the 790 eV threshold applied in the condensed history model used by Geant4 which impacts the secondary electron energy distribution. Results obtained for carbon and gold targets highlight the impact of the secondary electron production threshold for proton ionization process considered in condensed history models. The experimental results demonstrate that the single interaction approach used in TRAX is adapted to reproduce secondary electron emission from GNPs. On the other hand, the standard electron generation threshold implement in G4BetheBlochModel and G4BraggModel condensed-history models used in Geant4 is not adapted to reproduce low energy electron emission in gold targets. Finally, the results highlight that the GNP coating leads to a decrease of the electron yield and mostly affects low energy electrons (<500 eV) emitted from GNPs.


Subject(s)
Electrons , Gold/chemistry , Metal Nanoparticles/chemistry , Monte Carlo Method , Polymers/chemistry , Protons , Radiation Dosage , Scattering, Radiation
2.
Phys Med Biol ; 64(6): 065014, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30731439

ABSTRACT

In protontherapy, it has been suggested that nanoparticles of high-Z material like gold (GNP) could be used as radiosensitizers. The origin of this enhancement phenomenon for proton radiation is not yet well understood and additional mechanistic insights are required. Previous works have highlighted the good capabilities of TRAX to reproduce secondary electron emission from gold material. Therefore, TRAX cross sections obtained with the binary encounter approximation (BEA) model for proton ionization were implemented within Geant4 for gold material. Based on the TRAX cross sections, improved Geant4 simulations have been developed to investigate the energy deposition and radical species production around a spherical gold nanoparticle (5 and 10 nm in diameter) placed in a water volume during proton irradiation. Simulations were performed for incident 2 MeV proton. The dose enhancement factor and the radiolysis enhancement factor were quantified. Results obtained with the BEA model were compared with results obtained with condensed-history models. Experimental irradiation of 200 nm gold films were performed to validate the secondary electron emission reproduction capabilities of physical models used in Monte Carlo (MC) simulations. TRAX simulations reproduced the experimental backscattered electron energy spectrum from gold film with better agreement than Geant4. Results on gold film obtained with the BEA model enabled to estimate the electron emission from GNPs. Results obtained in our study tend to support that the use of the BEA discrete model leads to a significant increase of the dose in the near vicinity of GNPs (<20 nm), while condensed history models used in Geant4 seem to overestimate the dose and the number of chemical species for increasing distances from the GNP. Based on discrete BEA model results, no enhancement effect due to secondary electron emitted from the GNP is expected if the GNP is not in close proximity to key cellular functional elements (DNA, mitochondria…).


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Monte Carlo Method , Phantoms, Imaging , Protons , Pulse Radiolysis , Radiation-Sensitizing Agents/chemistry , Humans , Radiotherapy , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL