Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Res Sq ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38978575

ABSTRACT

Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of multimodal diversity (geographical, socioeconomic, sociodemographic, sex, neurodegeneration) on the brain age gap (BAG) is unknown. Here, we analyzed datasets from 5,306 participants across 15 countries (7 Latin American countries -LAC, 8 non-LAC). Based on higher-order interactions in brain signals, we developed a BAG deep learning architecture for functional magnetic resonance imaging (fMRI=2,953) and electroencephalography (EEG=2,353). The datasets comprised healthy controls, and individuals with mild cognitive impairment, Alzheimer's disease, and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (fMRI: MDE=5.60, RMSE=11.91; EEG: MDE=5.34, RMSE=9.82) compared to non-LAC, associated with frontoposterior networks. Structural socioeconomic inequality and other disparity-related factors (pollution, health disparities) were influential predictors of increased brain age gaps, especially in LAC (R2=0.37, F2=0.59, RMSE=6.9). A gradient of increasing BAG from controls to mild cognitive impairment to Alzheimer's disease was found. In LAC, we observed larger BAGs in females in control and Alzheimer's disease groups compared to respective males. Results were not explained by variations in signal quality, demographics, or acquisition methods. Findings provide a quantitative framework capturing the multimodal diversity of accelerated brain aging.

2.
Neuroimage ; 295: 120636, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38777219

ABSTRACT

Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.


Subject(s)
Brain , Cognition , Electroencephalography , Humans , Male , Female , Adult , Cognition/physiology , Middle Aged , Brain/physiology , Aged , Young Adult , Individuality , Adolescent , Age Factors , Aging/physiology
3.
Neuroimage ; 293: 120633, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704057

ABSTRACT

Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso­scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs' simulated functional connectivity was characterized by a meso­scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso­scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.


Subject(s)
Brain , Connectome , Magnetic Resonance Imaging , Neuronal Plasticity , Video Games , Humans , Neuronal Plasticity/physiology , Connectome/methods , Male , Adult , Brain/physiology , Brain/diagnostic imaging , Young Adult , Female , Nerve Net/physiology , Nerve Net/diagnostic imaging , Models, Neurological
4.
Alzheimers Res Ther ; 16(1): 79, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38605416

ABSTRACT

BACKGROUND: The hypothesis of decreased neural inhibition in dementia has been sparsely studied in functional magnetic resonance imaging (fMRI) data across patients with different dementia subtypes, and the role of social and demographic heterogeneities on this hypothesis remains to be addressed. METHODS: We inferred regional inhibition by fitting a biophysical whole-brain model (dynamic mean field model with realistic inter-areal connectivity) to fMRI data from 414 participants, including patients with Alzheimer's disease, behavioral variant frontotemporal dementia, and controls. We then investigated the effect of disease condition, and demographic and clinical variables on the local inhibitory feedback, a variable related to the maintenance of balanced neural excitation/inhibition. RESULTS: Decreased local inhibitory feedback was inferred from the biophysical modeling results in dementia patients, specific to brain areas presenting neurodegeneration. This loss of local inhibition correlated positively with years with disease, and showed differences regarding the gender and geographical origin of the patients. The model correctly reproduced known disease-related changes in functional connectivity. CONCLUSIONS: Results suggest a critical link between abnormal neural and circuit-level excitability levels, the loss of grey matter observed in dementia, and the reorganization of functional connectivity, while highlighting the sensitivity of the underlying biophysical mechanism to demographic and clinical heterogeneities in the patient population.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Humans , Brain/pathology , Magnetic Resonance Imaging , Gray Matter/pathology , Frontotemporal Dementia/pathology , Alzheimer Disease/pathology , Neural Inhibition
5.
Neuroimage ; 293: 120626, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677632

ABSTRACT

Spatio-temporal patterns of evoked brain activity contain information that can be used to decode and categorize the semantic content of visual stimuli. However, this procedure can be biased by low-level image features independently of the semantic content present in the stimuli, prompting the need to understand the robustness of different models regarding these confounding factors. In this study, we trained machine learning models to distinguish between concepts included in the publicly available THINGS-EEG dataset using electroencephalography (EEG) data acquired during a rapid serial visual presentation paradigm. We investigated the contribution of low-level image features to decoding accuracy in a multivariate model, utilizing broadband data from all EEG channels. Additionally, we explored a univariate model obtained through data-driven feature selection applied to the spatial and frequency domains. While the univariate models exhibited better decoding accuracy, their predictions were less robust to the confounding effect of low-level image statistics. Notably, some of the models maintained their accuracy even after random replacement of the training dataset with semantically unrelated samples that presented similar low-level content. In conclusion, our findings suggest that model optimization impacts sensitivity to confounding factors, regardless of the resulting classification performance. Therefore, the choice of EEG features for semantic decoding should ideally be informed by criteria beyond classifier performance, such as the neurobiological mechanisms under study.


Subject(s)
Electroencephalography , Semantics , Humans , Electroencephalography/methods , Female , Male , Adult , Young Adult , Machine Learning , Brain/physiology
6.
Alzheimers Dement ; 20(5): 3228-3250, 2024 05.
Article in English | MEDLINE | ID: mdl-38501336

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) lack mechanistic biophysical modeling in diverse, underrepresented populations. Electroencephalography (EEG) is a high temporal resolution, cost-effective technique for studying dementia globally, but lacks mechanistic models and produces non-replicable results. METHODS: We developed a generative whole-brain model that combines EEG source-level metaconnectivity, anatomical priors, and a perturbational approach. This model was applied to Global South participants (AD, bvFTD, and healthy controls). RESULTS: Metaconnectivity outperformed pairwise connectivity and revealed more viscous dynamics in patients, with altered metaconnectivity patterns associated with multimodal disease presentation. The biophysical model showed that connectome disintegration and hypoexcitability triggered altered metaconnectivity dynamics and identified critical regions for brain stimulation. We replicated the main results in a second subset of participants for validation with unharmonized, heterogeneous recording settings. DISCUSSION: The results provide a novel agenda for developing mechanistic model-inspired characterization and therapies in clinical, translational, and computational neuroscience settings.


Subject(s)
Alzheimer Disease , Brain , Electroencephalography , Frontotemporal Dementia , Humans , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/pathology , Brain/physiopathology , Brain/pathology , Female , Alzheimer Disease/physiopathology , Male , Aged , Connectome , Middle Aged , Models, Neurological
7.
J Affect Disord ; 353: 60-69, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38423367

ABSTRACT

BACKGROUND: Psilocybin is a serotonergic psychedelic drug under assessment as a potential therapy for treatment-resistant and major depression. Heterogeneous treatment responses raise interest in predicting the outcome from baseline data. METHODS: A machine learning pipeline was implemented to investigate baseline resting-state functional connectivity measured with functional magnetic resonance imaging (fMRI) as a predictor of symptom severity in psilocybin monotherapy for treatment-resistant depression (16 patients administered two 5 mg capsules followed by 25 mg, separated by one week). Generalizability was tested in a sample of 22 patients who participated in a psilocybin vs. escitalopram trial for moderate-to-severe major depression (two separate doses of 25 mg of psilocybin 3 weeks apart plus 6 weeks of daily placebo vs. two separate doses of 1 mg of psilocybin 3 weeks apart plus 6 weeks of daily oral escitalopram). The analysis was repeated using both samples combined. RESULTS: Functional connectivity of visual, default mode and executive networks predicted early symptom improvement, while the salience network predicted responders up to 24 weeks after treatment (accuracy≈0.9). Generalization performance was borderline significant. Consistent results were obtained from the combined sample analysis. Fronto-occipital and fronto-temporal coupling predicted early and late symptom reduction, respectively. LIMITATIONS: The number of participants and differences between the two datasets limit the generalizability of the findings, while the lack of a placebo arm limits their specificity. CONCLUSIONS: Baseline neurophysiological measurements can predict the outcome of psilocybin treatment for depression. Future research based on larger datasets should strive to assess the generalizability of these predictions.


Subject(s)
Depressive Disorder, Major , Psilocybin , Humans , Psilocybin/pharmacology , Psilocybin/therapeutic use , Depression , Escitalopram , Magnetic Resonance Imaging , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy
8.
Brain Topogr ; 37(2): 329-342, 2024 03.
Article in English | MEDLINE | ID: mdl-38228923

ABSTRACT

Microstate sequences summarize the changing voltage patterns measured by electroencephalography, using a clustering approach to reduce the high dimensionality of the underlying data. A common approach is to restrict the pattern matching step to local maxima of the global field power (GFP) and to interpolate the microstate fit in between. In this study, we investigate how the anesthetic propofol affects microstate sequence periodicity and predictability, and how these metrics are changed by interpolation. We performed two frequency analyses on microstate sequences, one based on time-lagged mutual information, the other based on Fourier transform methodology, and quantified the effects of interpolation. Resting-state microstate sequences had a 20 Hz frequency peak related to dominant 10 Hz (alpha) rhythms, and the Fourier approach demonstrated that all five microstate classes followed this frequency. The 20 Hz periodicity was reversibly attenuated under moderate propofol sedation, as shown by mutual information and Fourier analysis. Characteristic microstate frequencies could only be observed in non-interpolated microstate sequences and were masked by smoothing effects of interpolation. Information-theoretic analysis revealed faster microstate dynamics and larger entropy rates under propofol, whereas Shannon entropy did not change significantly. In moderate sedation, active information storage decreased for non-interpolated sequences. Signatures of non-equilibrium dynamics were observed in non-interpolated sequences, but no changes were observed between sedation levels. All changes occurred while subjects were able to perform an auditory perception task. In summary, we show that low dose propofol reversibly increases the randomness of microstate sequences and attenuates microstate oscillations without correlation to cognitive task performance. Microstate dynamics between GFP peaks reflect physiological processes that are not accessible in interpolated sequences.


Subject(s)
Brain , Propofol , Humans , Brain/physiology , Electroencephalography , Alpha Rhythm , Cluster Analysis
9.
Alzheimers Dement ; 20(2): 925-940, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37823470

ABSTRACT

INTRODUCTION: Verbal fluency tasks are common in Alzheimer's disease (AD) assessments. Yet, standard valid response counts fail to reveal disease-specific semantic memory patterns. Here, we leveraged automated word-property analysis to capture neurocognitive markers of AD vis-à-vis behavioral variant frontotemporal dementia (bvFTD). METHODS: Patients and healthy controls completed two fluency tasks. We counted valid responses and computed each word's frequency, granularity, neighborhood, length, familiarity, and imageability. These features were used for group-level discrimination, patient-level identification, and correlations with executive and neural (magnetic resonanance imaging [MRI], functional MRI [fMRI], electroencephalography [EEG]) patterns. RESULTS: Valid responses revealed deficits in both disorders. Conversely, frequency, granularity, and neighborhood yielded robust group- and subject-level discrimination only in AD, also predicting executive outcomes. Disease-specific cortical thickness patterns were predicted by frequency in both disorders. Default-mode and salience network hypoconnectivity, and EEG beta hypoconnectivity, were predicted by frequency and granularity only in AD. DISCUSSION: Word-property analysis of fluency can boost AD characterization and diagnosis. HIGHLIGHTS: We report novel word-property analyses of verbal fluency in AD and bvFTD. Standard valid response counts captured deficits and brain patterns in both groups. Specific word properties (e.g., frequency, granularity) were altered only in AD. Such properties predicted cognitive and neural (MRI, fMRI, EEG) patterns in AD. Word-property analysis of fluency can boost AD characterization and diagnosis.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Humans , Alzheimer Disease/diagnosis , Neuropsychological Tests , Brain/diagnostic imaging , Memory , Magnetic Resonance Imaging , Frontotemporal Dementia/diagnosis , Memory Disorders
10.
Brain Topogr ; 37(2): 296-311, 2024 03.
Article in English | MEDLINE | ID: mdl-37751054

ABSTRACT

EEG microstate sequence analysis quantifies properties of ongoing brain electrical activity which is known to exhibit complex dynamics across many time scales. In this report we review recent developments in quantifying microstate sequence complexity, we classify these approaches with regard to different complexity concepts, and we evaluate excess entropy as a yet unexplored quantity in microstate research. We determined the quantities entropy rate, excess entropy, Lempel-Ziv complexity (LZC), and Hurst exponents on Potts model data, a discrete statistical mechanics model with a temperature-controlled phase transition. We then applied the same techniques to EEG microstate sequences from wakefulness and non-REM sleep stages and used first-order Markov surrogate data to determine which time scales contributed to the different complexity measures. We demonstrate that entropy rate and LZC measure the Kolmogorov complexity (randomness) of microstate sequences, whereas excess entropy and Hurst exponents describe statistical complexity which attains its maximum at intermediate levels of randomness. We confirmed the equivalence of entropy rate and LZC when the LZ-76 algorithm is used, a result previously reported for neural spike train analysis (Amigó et al., Neural Comput 16:717-736, https://doi.org/10.1162/089976604322860677 , 2004). Surrogate data analyses prove that entropy-based quantities and LZC focus on short-range temporal correlations, whereas Hurst exponents include short and long time scales. Sleep data analysis reveals that deeper sleep stages are accompanied by a decrease in Kolmogorov complexity and an increase in statistical complexity. Microstate jump sequences, where duplicate states have been removed, show higher randomness, lower statistical complexity, and no long-range correlations. Regarding the practical use of these methods, we suggest that LZC can be used as an efficient entropy rate estimator that avoids the estimation of joint entropies, whereas entropy rate estimation via joint entropies has the advantage of providing excess entropy as the second parameter of the same linear fit. We conclude that metrics of statistical complexity are a useful addition to microstate analysis and address a complexity concept that is not yet covered by existing microstate algorithms while being actively explored in other areas of brain research.


Subject(s)
Brain , Electroencephalography , Humans , Electroencephalography/methods , Brain Mapping/methods , Sleep , Algorithms
11.
bioRxiv ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38077041

ABSTRACT

Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlaying mechanisms related to plasticity-induced brain structural changes and their impact in brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso-scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, with the aim of generating simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs' simulated functional connectivity was characterized by a meso-scale integration, with increased local connectivity in frontal, parietal and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso-scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light into the mechanisms underlying structural neural plasticity triggered by video game experiences.

12.
Netw Neurosci ; 7(3): 966-998, 2023.
Article in English | MEDLINE | ID: mdl-37781151

ABSTRACT

A promising idea in human cognitive neuroscience is that the default mode network (DMN) is responsible for coordinating the recruitment and scheduling of networks for computing and solving task-specific cognitive problems. This is supported by evidence showing that the physical and functional distance of DMN regions is maximally removed from sensorimotor regions containing environment-driven neural activity directly linked to perception and action, which would allow the DMN to orchestrate complex cognition from the top of the hierarchy. However, discovering the functional hierarchy of brain dynamics requires finding the best way to measure interactions between brain regions. In contrast to previous methods measuring the hierarchical flow of information using, for example, transfer entropy, here we used a thermodynamics-inspired, deep learning based Temporal Evolution NETwork (TENET) framework to assess the asymmetry in the flow of events, 'arrow of time', in human brain signals. This provides an alternative way of quantifying hierarchy, given that the arrow of time measures the directionality of information flow that leads to a breaking of the balance of the underlying hierarchy. In turn, the arrow of time is a measure of nonreversibility and thus nonequilibrium in brain dynamics. When applied to large-scale Human Connectome Project (HCP) neuroimaging data from close to a thousand participants, the TENET framework suggests that the DMN plays a significant role in orchestrating the hierarchy, that is, levels of nonreversibility, which changes between the resting state and when performing seven different cognitive tasks. Furthermore, this quantification of the hierarchy of the resting state is significantly different in health compared to neuropsychiatric disorders. Overall, the present thermodynamics-based machine-learning framework provides vital new insights into the fundamental tenets of brain dynamics for orchestrating the interactions between cognition and brain in complex environments.

13.
Netw Neurosci ; 7(2): 632-660, 2023.
Article in English | MEDLINE | ID: mdl-37397876

ABSTRACT

Large variability exists across brain regions in health and disease, considering their cellular and molecular composition, connectivity, and function. Large-scale whole-brain models comprising coupled brain regions provide insights into the underlying dynamics that shape complex patterns of spontaneous brain activity. In particular, biophysically grounded mean-field whole-brain models in the asynchronous regime were used to demonstrate the dynamical consequences of including regional variability. Nevertheless, the role of heterogeneities when brain dynamics are supported by synchronous oscillating state, which is a ubiquitous phenomenon in brain, remains poorly understood. Here, we implemented two models capable of presenting oscillatory behavior with different levels of abstraction: a phenomenological Stuart-Landau model and an exact mean-field model. The fit of these models informed by structural- to functional-weighted MRI signal (T1w/T2w) allowed us to explore the implication of the inclusion of heterogeneities for modeling resting-state fMRI recordings from healthy participants. We found that disease-specific regional functional heterogeneity imposed dynamical consequences within the oscillatory regime in fMRI recordings from neurodegeneration with specific impacts on brain atrophy/structure (Alzheimer's patients). Overall, we found that models with oscillations perform better when structural and functional regional heterogeneities are considered, showing that phenomenological and biophysical models behave similarly at the brink of the Hopf bifurcation.

14.
Prog Neurobiol ; 227: 102468, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37301532

ABSTRACT

Surviving and thriving in a complex world require intricate balancing of higher order brain functions with essential survival-related behaviours. Exactly how this is achieved is not fully understood but a large body of work has shown that different regions in the prefrontal cortex (PFC) play key roles for diverse cognitive and emotional tasks including emotion, control, response inhibition, mental set shifting and working memory. We hypothesised that the key regions are hierarchically organised and we developed a framework for discovering the driving brain regions at the top of the hierarchy, responsible for steering the brain dynamics of higher brain function. We fitted a time-dependent whole-brain model to the neuroimaging data from large-scale Human Connectome Project with over 1000 participants and computed the entropy production for rest and seven tasks (covering the main domains of cognition). This thermodynamics framework allowed us to identify the main common, unifying drivers steering the orchestration of brain dynamics during difficult tasks; located in key regions of the PFC (inferior frontal gyrus, lateral orbitofrontal cortex, rostral and caudal frontal cortex and rostral anterior cingulate cortex). Selectively lesioning these regions in the whole-brain model demonstrated their causal mechanistic importance. Overall, this shows the existence of a 'ring' of specific PFC regions ruling over the orchestration of higher brain function.


Subject(s)
Brain , Prefrontal Cortex , Humans , Prefrontal Cortex/physiology , Cognition/physiology , Emotions/physiology , Frontal Lobe , Brain Mapping
15.
Neuroimage ; 275: 120162, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37196986

ABSTRACT

Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state-of-the-art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.


Subject(s)
Brain Injuries , Consciousness , Humans , Consciousness/physiology , Consciousness Disorders/diagnostic imaging , Brain Injuries/complications , Neuroimaging , Computer Simulation
16.
Cell Rep ; 42(5): 112491, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37171963

ABSTRACT

Brain states are frequently represented using a unidimensional scale measuring the richness of subjective experience (level of consciousness). This description assumes a mapping between the high-dimensional space of whole-brain configurations and the trajectories of brain states associated with changes in consciousness, yet this mapping and its properties remain unclear. We combine whole-brain modeling, data augmentation, and deep learning for dimensionality reduction to determine a mapping representing states of consciousness in a low-dimensional space, where distances parallel similarities between states. An orderly trajectory from wakefulness to patients with brain injury is revealed in a latent space whose coordinates represent metrics related to functional modularity and structure-function coupling, increasing alongside loss of consciousness. Finally, we investigate the effects of model perturbations, providing geometrical interpretation for the stability and reversibility of states. We conclude that conscious awareness depends on functional patterns encoded as a low-dimensional trajectory within the vast space of brain configurations.


Subject(s)
Brain Injuries , Consciousness , Humans , Brain , Wakefulness , Neural Pathways , Magnetic Resonance Imaging , Brain Mapping
17.
Interface Focus ; 13(3): 20220086, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37065259

ABSTRACT

Life is a constant battle against equilibrium. From the cellular level to the macroscopic scale, living organisms as dissipative systems require the violation of their detailed balance, i.e. metabolic enzymatic reactions, in order to survive. We present a framework based on temporal asymmetry as a measure of non-equilibrium. By means of statistical physics, it was discovered that temporal asymmetries establish an arrow of time useful for assessing the reversibility in human brain time series. Previous studies in human and non-human primates have shown that decreased consciousness states such as sleep and anaesthesia result in brain dynamics closer to the equilibrium. Furthermore, there is growing interest in the analysis of brain symmetry based on neuroimaging recordings and since it is a non-invasive technique, it can be extended to different brain imaging modalities and applied at different temporo-spatial scales. In the present study, we provide a detailed description of our methodological approach, paying special attention to the theories that motivated this work. We test, for the first time, the reversibility analysis in human functional magnetic resonance imaging data in patients suffering from disorder of consciousness. We verify that the tendency of a decrease in the asymmetry of the brain signal together with the decrease in non-stationarity are key characteristics of impaired consciousness states. We expect that this work will open the way for assessing biomarkers for patients' improvement and classification, as well as motivating further research on the mechanistic understanding underlying states of impaired consciousness.

18.
Sci Rep ; 13(1): 6244, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069186

ABSTRACT

Psychedelic drugs, including lysergic acid diethylamide (LSD) and other agonists of the serotonin 2A receptor (5HT2A-R), induce drastic changes in subjective experience, and provide a unique opportunity to study the neurobiological basis of consciousness. One of the most notable neurophysiological signatures of psychedelics, increased entropy in spontaneous neural activity, is thought to be of relevance to the psychedelic experience, mediating both acute alterations in consciousness and long-term effects. However, no clear mechanistic explanation for this entropy increase has been put forward so far. We sought to do this here by building upon a recent whole-brain model of serotonergic neuromodulation, to study the entropic effects of 5HT2A-R activation. Our results reproduce the overall entropy increase observed in previous experiments in vivo, providing the first model-based explanation for this phenomenon. We also found that entropy changes were not uniform across the brain: entropy increased in all regions, but the larger effect were localised in visuo-occipital regions. Interestingly, at the whole-brain level, this reconfiguration was not well explained by 5HT2A-R density, but related closely to the topological properties of the brain's anatomical connectivity. These results help us understand the mechanisms underlying the psychedelic state and, more generally, the pharmacological modulation of whole-brain activity.


Subject(s)
Hallucinogens , Hallucinogens/pharmacology , Entropy , Brain/physiology , Lysergic Acid Diethylamide/pharmacology , Consciousness
19.
Phys Rev E ; 107(2-1): 024121, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932548

ABSTRACT

Consciousness is supported by complex patterns of brain activity which are indicative of irreversible nonequilibrium dynamics. While the framework of stochastic thermodynamics has facilitated the understanding of physical systems of this kind, its application to infer the level of consciousness from empirical data remains elusive. We faced this challenge by calculating entropy production in a multivariate Ornstein-Uhlenbeck process fitted to Functional magnetic resonance imaging brain activity recordings. To test this approach, we focused on the transition from wakefulness to deep sleep, revealing a monotonous relationship between entropy production and the level of consciousness. Our results constitute robust signatures of consciousness while also advancing our understanding of the link between consciousness and complexity from the fundamental perspective of statistical physics.


Subject(s)
Brain , Consciousness , Humans , Entropy , Wakefulness , Thermodynamics
20.
Proc Natl Acad Sci U S A ; 120(13): e2218949120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36940333

ABSTRACT

Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.


Subject(s)
Hallucinogens , N,N-Dimethyltryptamine , Humans , N,N-Dimethyltryptamine/pharmacology , Hallucinogens/pharmacology , Magnetic Resonance Imaging , Brain , Electroencephalography
SELECTION OF CITATIONS
SEARCH DETAIL