Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 40(2): 224-230, 2019 02.
Article in English | MEDLINE | ID: mdl-30630834

ABSTRACT

BACKGROUND AND PURPOSE: Synthetic FLAIR images are of lower quality than conventional FLAIR images. Here, we aimed to improve the synthetic FLAIR image quality using deep learning with pixel-by-pixel translation through conditional generative adversarial network training. MATERIALS AND METHODS: Forty patients with MS were prospectively included and scanned (3T) to acquire synthetic MR imaging and conventional FLAIR images. Synthetic FLAIR images were created with the SyMRI software. Acquired data were divided into 30 training and 10 test datasets. A conditional generative adversarial network was trained to generate improved FLAIR images from raw synthetic MR imaging data using conventional FLAIR images as targets. The peak signal-to-noise ratio, normalized root mean square error, and the Dice index of MS lesion maps were calculated for synthetic and deep learning FLAIR images against conventional FLAIR images, respectively. Lesion conspicuity and the existence of artifacts were visually assessed. RESULTS: The peak signal-to-noise ratio and normalized root mean square error were significantly higher and lower, respectively, in generated-versus-synthetic FLAIR images in aggregate intracranial tissues and all tissue segments (all P < .001). The Dice index of lesion maps and visual lesion conspicuity were comparable between generated and synthetic FLAIR images (P = 1 and .59, respectively). Generated FLAIR images showed fewer granular artifacts (P = .003) and swelling artifacts (in all cases) than synthetic FLAIR images. CONCLUSIONS: Using deep learning, we improved the synthetic FLAIR image quality by generating FLAIR images that have contrast closer to that of conventional FLAIR images and fewer granular and swelling artifacts, while preserving the lesion contrast.


Subject(s)
Brain/diagnostic imaging , Deep Learning , Image Interpretation, Computer-Assisted/methods , Neuroimaging/methods , Adult , Artifacts , Brain/pathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Software
2.
AJNR Am J Neuroradiol ; 38(2): 257-263, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27932506

ABSTRACT

BACKGROUND AND PURPOSE: Synthetic MR imaging enables the creation of various contrast-weighted images including double inversion recovery and phase-sensitive inversion recovery from a single MR imaging quantification scan. Here, we assessed whether synthetic MR imaging is suitable for detecting MS plaques. MATERIALS AND METHODS: Quantitative and conventional MR imaging data on 12 patients with MS were retrospectively analyzed. Synthetic T2-weighted, FLAIR, double inversion recovery, and phase-sensitive inversion recovery images were produced after quantification of T1 and T2 values and proton density. Double inversion recovery images were optimized for each patient by adjusting the TI. The number of visible plaques was determined by a radiologist for a set of these 4 types of synthetic MR images and a set of conventional T1-weighted inversion recovery, T2-weighted, and FLAIR images. Conventional 3D double inversion recovery and other available images were used as the criterion standard. The total acquisition time of synthetic MR imaging was 7 minutes 12 seconds and that of conventional MR imaging was 6 minutes 29 seconds The lesion-to-WM contrast and lesion-to-WM contrast-to-noise ratio were calculated and compared between synthetic and conventional double inversion recovery images. RESULTS: The total plaques detected by synthetic and conventional MR images were 157 and 139, respectively (P = .014). The lesion-to-WM contrast and contrast-to-noise ratio on synthetic double inversion recovery images were superior to those on conventional double inversion recovery images (P = .001 and < 0.001, respectively). CONCLUSIONS: Synthetic MR imaging enabled detection of more MS plaques than conventional MR imaging in a comparable acquisition time. The contrast for MS plaques on synthetic double inversion recovery images was better than on conventional double inversion recovery images.


Subject(s)
Demyelinating Diseases/diagnostic imaging , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Adult , Aged , Female , Humans , Male , Middle Aged , Retrospective Studies
3.
AJNR Am J Neuroradiol ; 38(2): 237-242, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27789453

ABSTRACT

BACKGROUND AND PURPOSE: T1 and T2 values and proton density can now be quantified on the basis of a single MR acquisition. The myelin and edema in a voxel can also be estimated from these values. The purpose of this study was to evaluate a multiparametric quantitative MR imaging model that assesses myelin and edema for characterizing plaques, periplaque white matter, and normal-appearing white matter in patients with MS. MATERIALS AND METHODS: We examined 3T quantitative MR imaging data from 21 patients with MS. The myelin partial volume, excess parenchymal water partial volume, the inverse of T1 and transverse T2 relaxation times (R1, R2), and proton density were compared among plaques, periplaque white matter, and normal-appearing white matter. RESULTS: All metrics differed significantly across the 3 groups (P < .001). Those in plaques differed most from those in normal-appearing white matter. The percentage changes of the metrics in plaques and periplaque white matter relative to normal-appearing white matter were significantly more different from zero for myelin partial volume (mean, -61.59 ± 20.28% [plaque relative to normal-appearing white matter], and mean, -10.51 ± 11.41% [periplaque white matter relative to normal-appearing white matter]), and excess parenchymal water partial volume (13.82 × 103 ± 49.47 × 103% and 51.33 × 102 ± 155.31 × 102%) than for R1 (-35.23 ± 13.93% and -6.08 ± 8.66%), R2 (-21.06 ± 11.39% and -4.79 ± 6.79%), and proton density (23.37 ± 10.30% and 3.37 ± 4.24%). CONCLUSIONS: Multiparametric quantitative MR imaging captures white matter damage in MS. Myelin partial volume and excess parenchymal water partial volume are more sensitive to the MS disease process than R1, R2, and proton density.


Subject(s)
Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Myelin Sheath/pathology , Neuroimaging/methods , White Matter/diagnostic imaging , Adult , Edema/diagnostic imaging , Feasibility Studies , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...