Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 253
Filter
1.
Cancers (Basel) ; 16(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893150

ABSTRACT

Immunotherapy is a rapidly advancing field of research in the treatment of conditions such as cancer and autoimmunity. Nanomaterials can be designed for immune system manipulation, with precise targeted delivery and improved immunomodulatory efficacy. Here, we elaborate on various strategies using nanomaterials, including liposomes, polymers, and inorganic NPs, and discuss their detailed design intricacies, mechanisms, and applications, including the current regulatory issues. This type of nanomaterial design for targeting specific immune cells or tissues and controlling release kinetics could push current technological frontiers and provide new and innovative solutions for immune-related disorders and diseases without off-target effects. These materials enable targeted interactions with immune cells, thereby enhancing the effectiveness of checkpoint inhibitors, cancer vaccines, and adoptive cell therapies. Moreover, they allow for fine-tuning of immune responses while minimizing side effects. At the intersection of nanotechnology and immunology, nanomaterial-based platforms have immense potential to revolutionize patient-centered immunotherapy and reshape disease management. By prioritizing safety, customization, and compliance with regulatory standards, these systems can make significant contributions to precision medicine, thereby significantly impacting the healthcare landscape.

2.
Int J Pharm ; : 124403, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944167

ABSTRACT

Nanotechnology-based drug delivery systems, including siRNA, present an innovative approach to treating breast cancer, which disproportionately affects women. These systems enable personalized and targeted therapies, adept at managing drug resistance and minimizing off-target effects. This review delves into the current landscape of nanotechnology-derived siRNA transport systems for breast cancer treatment, discussing their mechanisms of action, preclinical and clinical research, therapeutic applications, challenges, and future prospects. Emphasis is placed on the importance of targeted delivery and precise gene silencing in improving therapeutic efficacy and patient outcomes. The review addresses specific hurdles such as specificity, biodistribution, immunological reactions, and regulatory approval, offering potential solutions and avenues for future research. SiRNA drug delivery systems hold promise in revolutionizing cancer care and improving patient outcomes, but realizing their full potential necessitates ongoing research, innovation, and collaboration. Understanding the intricacies of siRNA delivery mechanisms is pivotal for designing effective cancer treatments, overcoming challenges, and advancing siRNA-based therapies for various diseases, including cancer. The article provides a comprehensive review of the methods involved in siRNA transport for therapeutic applications, particularly in cancer treatment, elucidating the complex journey of siRNA molecules from extracellular space to intracellular targets. Key mechanisms such as endocytosis, receptor-mediated uptake, and membrane fusion are explored, alongside innovative delivery vehicles and technologies that enhance siRNA delivery efficiency. Moreover, the article discusses challenges and opportunities in the field, including issues related to specificity, biodistribution, immune response, and clinical translation. By comprehending the mechanisms of siRNA delivery, researchers can design and develop more effective siRNA-based therapies for various diseases, including cancer.

3.
Nutr Cancer ; : 1-24, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847479

ABSTRACT

Obesity has emerged as an important global health challenge, significantly influencing the incidence and progression of various cancers. This comprehensive review elucidates the complex relationship between obesity and oncogenesis, focusing particularly on the role of dysregulated signaling pathways as central mediators of this association. We delve into the contributions of obesity-induced alterations in key signaling cascades, including PI3K/AKT/mTOR, JAK/STAT, NF-κB, and Wnt/ß-catenin to carcinogenesis. These alterations facilitate unchecked cellular proliferation, chronic inflammation and apoptosis resistance. Epidemiological evidence links obesity with increased cancer susceptibility and adverse prognostic outcomes, with pronounced risks for specific cancers such as breast, colorectal, endometrial and hepatic malignancies. This review synthesizes data from both animal and clinical studies to underscore the pivotal role of disrupted signaling pathways in shaping innovative therapeutic strategies. We highlight the critical importance of lifestyle modifications in obesity management and cancer risk mitigation, stressing the benefits of dietary changes, physical activity, and behavioral interventions. Moreover, we examine targeted pharmacological strategies addressing aberrant pathways in obesity-related tumors and discuss the integration of cutting-edge treatments, including immunotherapy and precision medicine, into clinical practice.

4.
Inflammation ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918333

ABSTRACT

This study aimed to investigate the therapeutic potential of scopoletin in ulcerative colitis, with a primary focus on its impact on crucial inflammatory pathways and immune responses. A male mouse model of DSS-induced colitis was employed with six distinct groups: a control group, a group subjected to DSS only, three groups treated with varying scopoletin doses, and the final group treated with dexamethasone. The investigation included an assessment of the effects of scopoletin on colitis symptoms, including alterations in body weight, Disease Activity Index (DAI), and histopathological changes in colonic tissue. Furthermore, this study scrutinized the influence of scopoletin on cytokine production, PPARγ and NF-κB expression, NLRP3 inflammasome, and the composition of intestinal bacteria. Scopoletin treatment yielded noteworthy improvements in DSS-induced colitis in mice, as evidenced by reduced weight loss and colonic shortening (p < 0.05, < 0.01, respectively). It effectively diminished TNF-α, IL-1ß, and IL-12 cytokine levels (p < 0.01, p < 0.05), attenuated NLRP3 inflammasome activation and the associated cytokine release (p < 0.05, p < 0.01), and modulated the immune response by elevating PPARγ expression while suppressing NF-κB pathway activation (p < 0.05, p < 0.01). Additionally, scopoletin induced alterations in the gut microbiota composition, augmenting beneficial Lactobacillus and Bifidobacteria while reducing E. coli (p < 0.05). It also enhanced tight junction proteins, signifying an improvement in the intestinal barrier integrity (p < 0.05, < 0.01). Scopoletin is a promising therapeutic agent for managing ulcerative colitis, showing benefits that extend beyond mere anti-inflammatory actions to encompass regulatory effects on gut microbiota and restoration of intestinal integrity.

5.
Cell Mol Life Sci ; 81(1): 214, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733529

ABSTRACT

The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.


Subject(s)
Carcinogenesis , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Neoplasm Metastasis , Neoplasms , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Epithelial-Mesenchymal Transition/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Drug Resistance, Neoplasm/genetics , Cell Plasticity/genetics , Animals , Gene Expression Regulation, Neoplastic
6.
ACS Omega ; 9(18): 20021-20029, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737026

ABSTRACT

The growing requirement for real-time monitoring of health factors such as heart rate, temperature, and blood glucose levels has resulted in an increase in demand for electrochemical sensors. This study focuses on enzyme-free glucose sensors based on 2D-MoS2 nanostructures explored by simple hydrothermal route. The 2D-MoS2 nanostructures were characterized by powder X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and XPS techniques and were immobilized at GCE to obtain MoS2-GCE interface. The fabricated interface was characterized by electrochemical impedance spectroscopy which shows less charge transfer resistance and demonstrated superior electrocatalytic properties of the modified surface. The sensing interface was applied for the detection of glucose using amperometry. The MoS2-GCE-sensing interface responded effectively as a nonenzymatic glucose sensor (NEGS) over a linearity range of 0.01-0.20 µM with a very low detection limit of 22.08 ng mL-1. This study demonstrates an easy method for developing a MoS2-GCE interface, providing a potential option for the construction of flexible and disposable nonenzymatic glucose sensors (NEGS). Moreover, the fabricated MoS2-GCE electrode precisely detected glucose molecules in real blood serum and urine samples of diabetic and nondiabetic persons. These findings suggest that 2D-MoS2 nanostructured materials show considerable promise as a possible option for hyperglycemia detection and therapy. Furthermore, the development of NEGS might create new prospects in the glucometer industry.

7.
Int J Psychiatry Med ; : 912174241255420, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771967

ABSTRACT

OBJECTIVE: This study investigated the prevalence and correlates of fibromyalgia and insomnia in a sample of Women with Multiple Sclerosis (WMS). METHODS: The study was cross-sectional in design and recruited a sample of 163 women with Relapsing-Remitting Multiple Sclerosis (RRMS). Fibromyalgia was assessed using the Patient Self-Report Survey (PSRS), following criteria outlined by the American College of Rheumatology. Insomnia was measured using the Arabic version of the Insomnia Severity Index (ISI-A). RESULTS: The prevalence of fibromyalgia and insomnia was 28.2% (n = 46) and 46.3% (n = 76), respectively. Multivariate analyses were used to determine significant independent correlates. Fibromyalgia was associated with age above 40 years (OR = 2.29, 95% CI = 1.01-5.18, P = .04), high school education (OR = 3.69, 95% CI = 1.62-8.37, P = .002), and non-use of analgesics (OR = .02, 95% CI = .004-.21, P = .001). Insomnia symptoms were significantly associated only with age above 40 years (OR = 2.16, 95% CI = 1.16-4.04, P = .01). CONCLUSION: These findings highlight the need for increased attention by primary care physicians towards diagnosing and treating fibromyalgia and insomnia among women with RRMS in Jordan, particularly among older women.

8.
Pathol Res Pract ; 257: 155285, 2024 May.
Article in English | MEDLINE | ID: mdl-38653089

ABSTRACT

Glioblastoma, a highly lethal form of brain cancer, is characterized by its aggressive growth and resistance to conventional treatments, often resulting in limited survival. The response to therapy is notably influenced by various patient-specific genetic factors, underscoring the disease's complexity. Despite the utilization of diverse treatment modalities such as surgery, radiation, and chemotherapy, many patients experience local relapse, emphasizing the critical need for improved therapeutic strategies to effectively target these formidable tumors. Recent years have witnessed a surge in interest in natural products derived from plants, particularly alkaloids, for their potential anticancer effects. Alkaloids have shown promise in cancer chemotherapy by selectively targeting crucial signaling pathways implicated in tumor progression and survival. Specifically, they modulate the NF-κB and MAPK pathways, resulting in reduced tumor growth and altered gene expression across various cancer types. Additionally, alkaloids exhibit the capacity to induce cell cycle arrest, further impeding tumor proliferation in several malignancies. This review aims to delineate recent advances in understanding the pathology of glioblastoma multiforme (GBM) and to explore the potential therapeutic implications of alkaloids in managing this deadly disease. By segregating discussions on GBM pathology from those on alkaloid-based therapies, we provide a structured overview of the current challenges in GBM treatment and the promising opportunities presented by alkaloid-based interventions. Furthermore, we briefly discuss potential future directions in GBM research and therapy beyond alkaloids, including emerging treatment modalities or areas of investigation that hold promise for improving patient outcomes. In conclusion, our efforts offer hope for enhanced outcomes and improved quality of life for GBM patients through alkaloid-based therapies. By integrating insights from pathology and therapeutic perspectives, we underscore the significance of a comprehensive approach in addressing this devastating disease.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Glioblastoma/therapy , Glioblastoma/genetics , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Alkaloids/therapeutic use , Signal Transduction/drug effects , Animals
9.
Cancer Lett ; 591: 216894, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38626856

ABSTRACT

This comprehensive review delves into the pivotal role of the tumor microenvironment (TME) in cancer metastasis and therapeutic response, offering fresh insights into the intricate interplay between cancer cells and their surrounding milieu. The TME, a dynamic ecosystem comprising diverse cellular and acellular elements, not only fosters tumor progression but also profoundly affects the efficacy of conventional and emerging cancer therapies. Through nuanced exploration, this review illuminates the multifaceted nature of the TME, elucidating its capacity to engender drug resistance via mechanisms such as hypoxia, immune evasion, and the establishment of physical barriers to drug delivery. Moreover, it investigates innovative therapeutic approaches aimed at targeting the TME, including stromal reprogramming, immune microenvironment modulation, extracellular matrix (ECM)-targeting agents, and personalized medicine strategies, highlighting their potential to augment treatment outcomes. Furthermore, this review critically evaluates the challenges posed by the complexity and heterogeneity of the TME, which contribute to variable therapeutic responses and potentially unintended consequences. This underscores the need to identify robust biomarkers and advance predictive models to anticipate treatment outcomes, as well as advocate for combination therapies that address multiple facets of the TME. Finally, the review emphasizes the necessity of an interdisciplinary approach and the integration of cutting-edge technologies to unravel the intricacies of the TME, thereby facilitating the development of more effective, adaptable, and personalized cancer treatments. By providing critical insights into the current state of TME research and its implications for the future of oncology, this review highlights the dynamic and evolving landscape of this field.


Subject(s)
Neoplasm Metastasis , Neoplasms , Tumor Microenvironment , Humans , Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/therapy , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Drug Resistance, Neoplasm , Animals , Precision Medicine
11.
Inflammopharmacology ; 32(3): 1705-1720, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38528307

ABSTRACT

Rheumatoid arthritis (RA) stands as an autoimmune disorder characterized by chronic joint inflammation, resulting in profound physiological alterations within the body. Affecting approximately 0.4-1.3% of the global population, this condition poses significant challenges as current therapeutic approaches primarily offer symptomatic relief, with the prospect of complete recovery remaining elusive. This review delves into the contemporary advancements in understanding the pathophysiology, diagnosis, and the therapeutic potential of herbal medicine in managing RA. Notably, early diagnosis during the initial stages emerges as the pivotal determinant for successful recovery post-treatment. Utilizing tools such as Magnetic Resonance Imaging (MRI), anti-citrullinated peptide antibody markers, and radiography proves crucial in pinpointing the diagnosis of RA with precision. Unveiling the intricate pathophysiological mechanisms of RA has paved the way for innovative therapeutic interventions, incorporating plant extracts and isolated phytoconstituents. In the realm of pharmacological therapy for RA, specific disease-modifying antirheumatic drugs have showcased commendable efficacy. However, this conventional approach is not without its drawbacks, as it is often associated with various side effects. The integration of methodological strategies, encompassing both pharmacological and plant-based herbal therapies, presents a promising avenue for achieving substantive recovery. This integrated approach not only addresses the symptoms but also strives to tackle the underlying causes of RA, fostering a more comprehensive and sustainable path towards healing.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Herbal Medicine , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/physiopathology , Humans , Antirheumatic Agents/therapeutic use , Antirheumatic Agents/pharmacology , Herbal Medicine/methods , Phytotherapy/methods , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
12.
Curr Drug Deliv ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38409707

ABSTRACT

The utilization of novel drug delivery systems loaded with essential oils has gained significant attention as a promising approach for biomedical applications in recent years. Plants possess essential oils that exhibit various medicinal properties, i.e., anti-oxidant, anti-microbial, anti- inflammatory, anti-cancer, immunomodulatory, etc., due to the presence of various phytoconstituents, including terpenes, phenols, aldehydes, ketones, alcohols, and esters. An understanding of conventional and advanced extraction techniques of Essential Oils (EOs) from several plant sources is further required before considering or loading EOs into drug delivery systems. Therefore, this article summarizes the various extraction techniques of EOs and their existing limitations. The in-built biological applications of EOs are of prerequisite importance for treating several diseases. Thus, the mechanisms of action of EOs for anti-inflammatory, anti-oxidant, anti-bacterial activities, etc., have been further explored in this article. The encapsulation of essential oils in micro or nanometric systems is an intriguing technique to render adequate stability to the thermosensitive compounds and shield them against environmental factors that might cause chemical degradation. Thus, the article further summarizes the advanced drug delivery approaches loaded with EOs and current challenges in the future outlook of EOs for biomedical applications.

13.
Int J Mol Sci ; 25(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396638

ABSTRACT

The study of intercellular adhesion molecule-1 (ICAM-1) and SIRT1, a member of the sirtuin family with nitric oxide (NO), is emerging in depression and anxiety. As with all antidepressants, the efficacy is delayed and inconsistent. Ascorbic acid (AA) and vitamin D (D) showed antidepressant properties, while etifoxine (Etx), a GABAA agonist, alleviates anxiety symptoms. The present study aimed to investigate the potential augmentation of citalopram using AA, D and Etx and related the antidepressant effect to brain and serum ICAM-1, SIRT1 and NO in an animal model. BALB/c mice were divided into naive, control, citalopram, citalopram + etx, citalopram + AA, citalopram + D and citalopram + etx + AA + D for 7 days. On the 8th day, the mice were restrained for 8 h, followed by a forced swim test and marble burying test before scarification. Whole-brain and serum expression of ICAM-1, Sirt1 and NO were determined. Citalopram's antidepressant and sedative effects were potentiated by ascorbic acid, vitamin D and etifoxine alone and in combination (p < 0.05), as shown by the decreased floating time and rearing frequency. Brain NO increased significantly (p < 0.05) in depression and anxiety and was associated with an ICAM-1 increase versus naive (p < 0.05) and a Sirt1 decrease (p < 0.05) versus naive. Both ICAM-1 and Sirt1 were modulated by antidepressants through a non-NO-dependent pathway. Serum NO expression was unrelated to serum ICAM-1 and Sirt1. Brain ICAM-1, Sirt1 and NO are implicated in depression and are modulated by antidepressants.


Subject(s)
Anxiety , Citalopram , Depression , Nitric Oxide , Oxazines , Animals , Mice , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Anxiety/drug therapy , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Citalopram/pharmacology , Citalopram/therapeutic use , Depression/drug therapy , Intercellular Adhesion Molecule-1 , Oxazines/pharmacology , Oxazines/therapeutic use , Sirtuin 1 , Vitamin D/pharmacology , Vitamin D/therapeutic use , Vitamins , Drug Therapy, Combination
14.
Biomedicines ; 12(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38397888

ABSTRACT

The primary cause of atherosclerotic cardiovascular disease (ASCVD) is elevated levels of low-density lipoprotein cholesterol (LDL-C). Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in this process by binding to the LDL receptor (LDL-R) domain, leading to reduced influx of LDL-C and decreased LDL-R cell surface presentation on hepatocytes, resulting higher circulating levels of LDL-C. As a consequence, PCSK9 has been identified as a crucial target for drug development against dyslipidemia and hypercholesterolemia, aiming to lower plasma LDL-C levels. This research endeavors to identify promising inhibitory candidates that target the allosteric site of PCSK9 through an in silico approach. To start with, the FDA-approved Drug Library from Selleckchem was selected and virtually screened by docking studies using Glide extra-precision (XP) docking mode and Smina software (Version 1.1.2). Subsequently, rescoring of 100 drug compounds showing good average docking scores were performed using Gnina software (Version 1.0) to generate CNN Score and CNN binding affinity. Among the drug compounds, amikacin, bestatin, and natamycin were found to exhibit higher docking scores and CNN affinities against the PCSK9 enzyme. Molecular dynamics simulations further confirmed that these drug molecules established the stable protein-ligand complexes when compared to the apo structure of PCSK9 and the complex with the co-crystallized ligand structure. Moreover, the MM-GBSA calculations revealed binding free energy values ranging from -84.22 to -76.39 kcal/mol, which were found comparable to those obtained for the co-crystallized ligand structure. In conclusion, these identified drug molecules have the potential to serve as inhibitors PCSK9 enzyme and these finding could pave the way for the development of new PCSK9 inhibitory drugs in future in vitro research.

15.
Cancer Lett ; 587: 216659, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38367897

ABSTRACT

Despite the challenges posed by drug resistance and side effects, chemotherapy remains a pivotal strategy in cancer treatment. A key issue in this context is macroautophagy (commonly known as autophagy), a dysregulated cell death mechanism often observed during chemotherapy. Autophagy plays a cytoprotective role by maintaining cellular homeostasis and recycling organelles, and emerging evidence points to its significant role in promoting cancer progression. Cisplatin, a DNA-intercalating agent known for inducing cell death and cell cycle arrest, often encounters resistance in chemotherapy treatments. Recent studies have shown that autophagy can contribute to cisplatin resistance or insensitivity in tumor cells through various mechanisms. This resistance can be mediated by protective autophagy, which suppresses apoptosis. Additionally, autophagy-related changes in tumor cell metastasis, particularly the induction of Epithelial-Mesenchymal Transition (EMT), can also lead to cisplatin resistance. Nevertheless, pharmacological strategies targeting the regulation of autophagy and apoptosis offer promising avenues to enhance cisplatin sensitivity in cancer therapy. Notably, numerous non-coding RNAs have been identified as regulators of autophagy in the context of cisplatin chemotherapy. Thus, therapeutic targeting of autophagy or its associated pathways holds potential for restoring cisplatin sensitivity, highlighting an important direction for future clinical research.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Cell Line, Tumor , Apoptosis , Autophagy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics
16.
Biopharm Drug Dispos ; 45(2): 71-82, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38400763

ABSTRACT

This research aims to identify regional differences in vildagliptin absorption across the intestinal membrane. Furthermore, it was to investigate the effect of verapamil or metformin on vildagliptin absorptive clearance. The study utilized an in situ rabbit intestinal perfusion technique to determine vildagliptin oral absorption from duodenum, jejunum, ileum, and ascending colon. This was conducted both with and without perfusion of metformin or verapamil. The findings revealed that the vildagliptin absorptive clearance per unit length varied by site and was in the order as follows: ileum < jejunum < duodenum < ascending colon, implying that P-gp is significant in the reduction of vildagliptin absorption. Also, the arrangement cannot reverse intestinal P-gp, but the observations suggest that P-gp is significant in reducing vildagliptin absorption. Verapamil co-perfusion significantly increased the vildagliptin absorptive clearance by 2.4 and 3.2 fold through the jejunum and ileum, respectively. Metformin co-administration showed a non-significant decrease in vildagliptin absorptive clearance through all tested segments. Vildagliptin absorption was site-dependent and may be related to the intestinal P-glycoprotein content. This may aid in understanding the important elements that influence vildagliptin absorption, besides drug-drug interactions that can occur in type 2 diabetic patients taking vildagliptin in conjunction with other drugs that can modify the P-glycoprotein level.


Subject(s)
Metformin , Animals , Humans , Rabbits , Vildagliptin/pharmacology , Metformin/pharmacology , Verapamil/pharmacology , Intestinal Absorption , Intestines , ATP Binding Cassette Transporter, Subfamily B
17.
EXCLI J ; 23: 62-78, 2024.
Article in English | MEDLINE | ID: mdl-38357097

ABSTRACT

Addressing the formidable challenge posed by the development of effective and personalized interventions for major depressive disorder (MDD) necessitates a comprehensive comprehension of the intricate role that plasma amino acids play and their implications in MDD pathology and pharmacology. Amino acids, owing to their indispensable functions in neurotransmission, metabolism, and immune regulation, emerge as pivotal entities in this intricate disorder. Our primary objective entails unraveling the underlying mechanisms and unveiling tailored treatments through a meticulous investigation into the interplay between plasma amino acids, MDD, and pharmacological strategies. By conducting a thorough and exhaustive review of the existing literature, we have identified pertinent studies on plasma amino acids in MDD, thereby uncovering noteworthy disturbances in the profiles of amino acids among individuals afflicted by MDD when compared to their healthy counterparts. Specifically, disruptions in the metabolism of tryptophan, phenylalanine, and tyrosine, which serve as precursors to essential neurotransmitters, have emerged as prospective biomarkers and critical contributors to the pathophysiology of depression. Amnio acids play an essential role in MDD and could represent an attractive pharmacological target, more studies are further required to fully reveal their underlying mechanisms.

18.
Expert Opin Drug Deliv ; 21(2): 309-324, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38284386

ABSTRACT

INTRODUCTION: The resistance to chemotherapy is a significant hurdle in breast cancer treatment, prompting the exploration of innovative strategies. This review discusses the potential of dual-loaded liposomal carriers to combat chemoresistance and improve outcomes for breast cancer patients. AREAS COVERED: This review discusses breast cancer chemotherapy resistance and dual-loaded liposomal carriers. Drug efflux pumps, DNA repair pathways, and signaling alterations are discussed as chemoresistance mechanisms. Liposomes can encapsulate several medicines and cargo kinds, according to the review. It examines how these carriers improve medication delivery, cancer cell targeting, and tumor microenvironment regulation. Also examined are dual-loaded liposomal carrier improvement challenges and techniques. EXPERT OPINION: The use of dual-loaded liposomal carriers represents a promising and innovative strategy in the battle against chemotherapy resistance in breast cancer. This article has explored the various mechanisms of chemoresistance in breast cancer, emphasizing the potential of dual-loaded liposomal carriers to overcome these challenges. These carriers offer versatility, enabling the encapsulation and precise targeting of multiple drugs with different modes of action, a crucial advantage when dealing with the complexity of breast cancer treatment.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Liposomes , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Drug Carriers/therapeutic use , Drug Delivery Systems/methods , Tumor Microenvironment
19.
Life Sci ; 339: 122393, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38176582

ABSTRACT

AIMS: Physical exercise has been widely recognized for its positive effects on health and well-being. Recently, the impact of exercise on the nervous system has gained attention, with evidence indicating improvements in attention, memory, neurogenesis, and the release of "happiness hormones." One potential mediator of these benefits is Irisin, a myokine induced by exercise that can cross the blood-brain barrier, reduce neuroinflammation, and counteract neurodegeneration. The objective of this study is to conduct a systematic review of animal trials to summarize the neuroprotective effects of Irisin injection in mitigating neuroinflammation and neurodegeneration. MATERIALS AND METHODS: Two independent reviewers screened three databases (PubMed, Embase, and Google Scholar) in November 2022. Animal studies assessing the neuroprotective effects of Irisin in mitigating neuroinflammation or counteracting neurodegeneration were included. The methodological quality of the included studies was assessed using SYRCLE's Risk of Bias tool. KEY FINDINGS: Twelve studies met the inclusion criteria. Irisin injection in rodents significantly reduced neuroinflammation, cytokine cascades, and neurodegeneration. It also protected neurons from damage and apoptosis, reduced oxidative stress, blood-brain barrier disruption, and neurobehavioral deficits following disease or injury. Various mechanisms were suggested to be responsible for these neuroprotective effects. Most of the included studies presented a low risk of bias based on SYRCLE's Risk of Bias tool. Irisin injection demonstrated the potential to alleviate neuroinflammation and counteract neurodegeneration in rodent models through multiple pathways. However, further research is needed to fully understand its mechanism of action and its potential applications in clinical practice and drug discovery.


Subject(s)
Fibronectins , Neuroprotective Agents , Animals , Fibronectins/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Neuroinflammatory Diseases , Exercise/physiology , Brain/metabolism
20.
Gene ; 905: 148174, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38242374

ABSTRACT

The intersection of mathematical modeling, nanotechnology, and epidemiology marks a paradigm shift in our battle against infectious diseases, aligning with the focus of the journal on the regulation, expression, function, and evolution of genes in diverse biological contexts. This exploration navigates the intricate dance of viral transmission dynamics, highlighting mathematical models as dual tools of insight and precision instruments, a theme relevant to the diverse sections of Gene. In the context of virology, ethical considerations loom large, necessitating robust frameworks to protect individual rights, an aspect essential in infectious disease research. Global collaboration emerges as a critical pillar in our response to emerging infectious diseases, fortified by the predictive prowess of mathematical models enriched by nanotechnology. The synergy of interdisciplinary collaboration, training the next generation to bridge mathematical rigor, biology, and epidemiology, promises accelerated discoveries and robust models that account for real-world complexities, fostering innovation and exploration in the field. In this intricate review, mathematical modeling in viral transmission dynamics and epidemiology serves as a guiding beacon, illuminating the path toward precision interventions, global preparedness, and the collective endeavor to safeguard human health, resonating with the aim of advancing knowledge in gene regulation and expression.


Subject(s)
Communicable Diseases , Humans , Communicable Diseases/epidemiology , Models, Theoretical , Mathematics
SELECTION OF CITATIONS
SEARCH DETAIL
...