Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
Add more filters










Publication year range
1.
J Nutr ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945299

ABSTRACT

BACKGROUND: Carnivorous fish have a low carbohydrate utilization ability, and the physiological and molecular basis of glucose intolerance has not been fully illustrated. OBJECTIVES: This study aimed to use largemouth bass as a model to investigate the possible mechanism of glucose intolerance in carnivorous fish with the help of snRNA-seq. METHODS: Two diets were formulated, a low carbohydrate diet (LC) and a high carbohydrate diet (HC). The feeding trial lasted for six weeks, then growth performance, biochemical parameters, liver histology, and snRNA-seq were performed. RESULTS: Growth performance of fish was not affected by the HC diet, while liver glucolipid metabolism disorder and liver injury were observed. A total of 13247 and 12848 cells from the liver derived from two groups were isolated and sequenced, and 7 major liver cell types were annotated by the marker genes. Hepatocytes and cholangiocytes were lower, hepatic stellate cells (HSCs) and immune cells were higher in the HC group compared to the LC group. Re-clustering analysis identified 7 subtypes of hepatocytes and immune cells, respectively. The HSCs showed more cell communication with other cell types, and periportal hepatocytes showed more cell communication with other subtype hepatocytes. Cell-cell communication mainly focused on cell junction related signaling pathways. Uncovered by the pseudotime analysis, midzonal hepatocytes were differentiated into two major branches, biliary epithelial hepatocytes, and hepatobiliary hybrid progenitor. Cell junction and liver fibrosis related genes were highly expressed in HC group, HC diet induced the activation of HSCs, and therefore led to the liver fibrosis of largemouth bass. CONCLUSION: HC diet induced liver glucolipid metabolism disorder and liver injury of largemouth bass,the increase and activation of HSCs might be the main reason for the liver injury. In adaption to HC diet, midzonal hepatocytes differentiated into two major branches, biliary epithelial hepatocytes, and hepatobiliary hybrid progenitors.

2.
Anim Nutr ; 17: 428-437, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860024

ABSTRACT

This experiment aimed to evaluate the impact of dietary hydroxyproline (Hyp) supplementation on the muscle quality of juvenile Pacific white shrimp (Litopenaeus vannamei) fed a low fishmeal diet. Six formulated diets included one high fishmeal (HF; 25% fishmeal content) and five low fishmeal diets (10% fishmeal content) with 0%, 0.2%, 0.4%, 0.6% and 0.8% Hyp (LF0, LF2, LF4, LF6 and LF8, respectively). Each diet was assigned to four replicates, and 40 shrimp (0.32 ± 0.00 g) per replicate were fed four times a day for 8 weeks. Dietary Hyp supplementation had little effects on growth performance, but increased the contents of Hyp, prolyl 4-hydroxylases (P4Hs), and collagen. The meat yield, springiness, hardness, chewiness, and cohesiveness of muscle were the highest in the LF4 group among the low fishmeal groups (P < 0.05). Cooking loss and freezing loss of muscle were the lowest in the LF4 group (P < 0.05). Dietary supplementation with 0.4% Hyp increased the myofiber density and decreased the myofiber diameter of muscle (P < 0.05). Supplementation of Hyp in the diet up-regulated the mRNA expression of smyhc5, smyhc15, col1a1, col1a2, igf-1f, tgf-ß and tor and down-regulated the mRNA expression of smyhc 1, smyhc 2, smyhc 6a (P < 0.05). Supplementation of Hyp in the diet up-regulated the protein expression of P-4E-BP1, P-AKT, AKT and P-AKT/AKT (P < 0.05). These results suggested that the addition of 0.4% Hyp to low fishmeal diets improved the muscle quality of L. vannamei.

3.
Fish Shellfish Immunol ; 150: 109610, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734117

ABSTRACT

This study looked at the effects of adding butyric acid (BA) to the diets of juvenile Pacific shrimp and how it affected their response to survival, immunity, histopathological, and gene expression profiles under heat stress. The shrimp were divided into groups: a control group with no BA supplementation and groups with BA inclusion levels of 0.5 %, 1 %, 1.5 %, 2 %, and 2.5 %. Following the 8-week feeding trial period, the shrimp endured a heat stress test lasting 1 h at a temperature of 38 °C. The results showed that the control group had a lower survival rate than those given BA. Interestingly, no mortality was observed in the group receiving 1.5 % BA supplementation. Heat stress had a negative impact on the activities of alkaline phosphatase (AKP) and acid phosphatase (ACP) in the control group. Still, these activities were increased in shrimp fed the BA diet. Similar variations were observed in AST and ALT fluctuations among the different groups. The levels of triglycerides (TG) and cholesterol (CHO) increased with high temperatures but were reduced in shrimp-supplemented BA. The activity of an antioxidant enzyme superoxide dismutase (SOD) increased with higher BA levels (P < 0.05). Moreover, the groups supplemented with 1.5 % BA exhibited a significant reduction in malondialdehyde (MDA) content (P < 0.05), suggesting the potential antioxidant properties of BA. The histology of the shrimp's hepatopancreas showed improvements in the groups given BA. Conversely, the BA significantly down-regulated the HSPs and up-regulated MnSOD transcript level in response to heat stress. The measured parameters determine the essential dietary requirement of BA for shrimp. Based on the results, the optimal level of BA for survival, antioxidant function, and immunity for shrimp under heat stress is 1.5 %.


Subject(s)
Animal Feed , Butyric Acid , Diet , Dietary Supplements , Heat-Shock Response , Hepatopancreas , Penaeidae , Animals , Penaeidae/immunology , Penaeidae/genetics , Penaeidae/physiology , Penaeidae/drug effects , Hepatopancreas/immunology , Hepatopancreas/drug effects , Diet/veterinary , Animal Feed/analysis , Dietary Supplements/analysis , Heat-Shock Response/drug effects , Butyric Acid/administration & dosage , Hot Temperature/adverse effects , Immunity, Innate/drug effects , Gene Expression/drug effects , Gene Expression/immunology , Random Allocation , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology
4.
Animals (Basel) ; 14(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38672387

ABSTRACT

Berberine is an alkaloid used to treat diabetes. This experiment aimed to investigate the effects of berberine supplementation in high-carbohydrate diets on the growth performance, glucose metabolism, bile acid synthesis, liver transcriptome, and intestinal flora of Nile tilapia. The six dietary groups were the C group with 29% carbohydrate, the H group with 44% carbohydrate, and the HB1-HB4 groups supplemented with 25, 50, 75, and 100 mg/kg of berberine in group H. The results of the 8-week trial showed that compared to group C, the abundance of Bacteroidetes was increased in group HB2 (p < 0.05). The cholesterol-7α-hydroxylase (CYP7A1) and sterol-27-hydroxylase (CYP27A1) activities were decreased and the expression of FXR was increased in group HB4 (p < 0.05). The pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase (PEPCK) activities was decreased in group HB4 (p < 0.05). The liver transcriptome suggests that berberine affects carbohydrate metabolic pathways and primary bile acid synthesis pathways. In summary, berberine affects the glucose metabolism in tilapia by altering the intestinal flora structure, enriching differentially expressed genes (DEGs) in the bile acid pathway to stimulate bile acid production so that it promotes glycolysis and inhibits gluconeogenesis. Therefore, 100 mg/kg of berberine supplementation in high-carbohydrate diets is beneficial to tilapia.

5.
Aquac Nutr ; 2024: 3920254, 2024.
Article in English | MEDLINE | ID: mdl-38415272

ABSTRACT

This study investigated the effects of varying doses of dietary aflatoxin B1 (AFB1) on the growth, intestinal health, and muscle quality of hybrid grouper. Four diets with varying AFB1 concentrations (0, 30, 445, and 2,230 µg kg-1) were used. Elevating AFB1 concentrations led to a decline in growth indexes, specifically the weight gain rate and the specific growth rate, although the survival rate remained unchanged. Morphological indicators showed a dose-dependent decline with AFB1 exposure. Intestinal MDA content and hindgut reactive oxygen species (ROS) levels increased, while antioxidant indexes and digestive enzymes decreased with higher AFB1 levels. AFB1 negatively influenced hindgut tight junction protein and antioxidant-related gene expression while promoting inflammation-related gene expression. The presence of AFB1 in the experiment led to a decrease in beneficial intestinal bacteria, such as Prevotella, and an increase in harmful intestinal bacteria, such as Prevotellaceae_NK3B31_group. Muscle lipid and unsaturated fatty acid content significantly decreased, while muscle protein and liver AFB1 content increased dramatically with higher AFB1 concentrations. AFB1 caused myofibrillar cleavage and myofilament damage, leading to increased spaces between muscle fibers. In conclusion, diets with AFB1 levels exceeding 30 µg kg-1 inhibited hybrid grouper growth, while levels surpassing 445 µg kg-1 resulted in hindgut ROS accumulation, inflammation, elevated intestinal permeability, reduced digestive enzyme activity, and compromised muscle quality.

6.
Antioxidants (Basel) ; 13(1)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38247512

ABSTRACT

This study aimed to assess the impact of α-lipoic acid on the growth performance, antioxidant capacity and immunity in hybrid groupers (♀ Epinephelus fuscoguttatus × â™‚ E. lanceolatus) fed with a high-lipid diet. Groupers (8.97 ± 0.01 g) were fed six different diets, with α-lipoic acid content in diets being 0, 400, 800, 1200, 1600, and 2000 mg/kg, named S1, S2, S3, S4, S5, and S6, respectively. The results show that the addition of 2000 mg/kg α-lipoic acid in the diet inhibited the growth, weight gain rate (WGR), and specific growth rate (SGR), which were significantly lower than other groups. In serum, catalase (CAT) and superoxide dismutase (SOD) were significantly higher in the S5 group than in the S1 group. In the liver, CAT, SOD and total antioxidative capacity (T-AOC) levels were significantly increased in α-lipoic acid supplemented groups. α-lipoic acid significantly upregulated liver antioxidant genes sod and cat, anti-inflammatory factor interleukin 10 (il10) and transforming growth factor ß (tgfß) mRNA levels. Conclusion: the addition of 2000 mg/kg of α-lipoic acid inhibits the growth of hybrid groupers. In addition, 400-800 mg/kg α-lipoic acid contents improve the antioxidant capacity of groupers and have a protective effect against high-lipid-diet-induced liver oxidative damage.

7.
Fish Physiol Biochem ; 50(1): 127-143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36826624

ABSTRACT

Little information is available on how exogenous bile acids alter lipid metabolism in muscle of fish. In the present study, an 8-week feeding trial were used to investigate the impacts of bile acids on lipid deposition, lipid metabolism, lipidomics, and transcriptomics in muscle of pearl gentian grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) fed a high-fat diet (HD). The HD treatment significantly increased the crude lipid content, while bile acids diet (BD) treatment decreased it (p = 0.057). BD treatment significantly decreased triglycerides level and significantly increased phosphatidylcholines, phosphatidylethanolamines, and phosphatidylglycerol levels. The contents of TG (17:0/18:2/18:2), TG (17:1/18:2/22:6), PC (6:0/22:1), PC (9:0/26:1), PC (26:1/6:0), PC (17:2/18:2), PE (16:0/18:1), PE (18:0/17:1), PG (18:0/20:5), PG (18:3/20:5), PG (19:0/16:1), and PG (18:0/18:1) in muscle were well response to dietary lipid level and bile acids supplementation. HD and BD groups induced a variety of adaptive metabolic responses in transcriptomics. HD treatment increased the lipogenesis and decreased lipolysis, whereas BD treatment decreased the lipogenesis and increased lipolysis. Present study revealed the improvement of muscular lipid metabolism and lipid composition in response to bile acids administration in pearl gentian grouper.


Subject(s)
Bass , Lipid Metabolism , Animals , Diet, High-Fat , Bass/physiology , Dietary Supplements , Liver/metabolism , Bile Acids and Salts/metabolism , Lipidomics , Gene Expression Profiling , Lipids/pharmacology
8.
Br J Nutr ; 131(1): 27-40, 2024 01 14.
Article in English | MEDLINE | ID: mdl-37492950

ABSTRACT

An 8-week experiment was performed to investigate the influence on growth performance, plasma biochemistry, glucose metabolism and the insulin pathway of supplementation of dietary taurine to a high-carbohydrate diet for grass carp. In this study, fish were fed diets at one of two carbohydrate levels, 31·49 % (positive control) or 38·61 % (T00). The high-carbohydrate basal diet (T00), without taurine, was supplemented with 0·05 % (T05), 0·10 % (T10), 0·15 % (T15) or 0·20 % (T20) taurine, resulting in six isonitrogenous (30·37 %) and isolipidic (2·37 %) experimental diets. The experimental results showed that optimal taurine level improved significantly weight gain, specific growth rate (SGR), feed utilisation, reduced plasma total cholesterol levels, TAG and promoted insulin-like growth factor level. Glucokinase, pyruvate kinase and phosphoenolpyruvate carboxykinase activities showed a quadratic function model with increasing dietary taurine level, while hexokinase, fatty acid synthetase activities exhibited a positive linear trend. Optimal taurine supplementation in high-carbohydrate diet upregulated insulin receptor (Ir), insulin receptor substrate (Irs1), phosphatidylinositol 3-kinase (pi3k), protein kinase B (akt1), glycogen synthase kinase 3 ß (gs3kß) mRNA level and downregulated insulin-like growth factor (igf-1), insulin-like growth factor 1 receptor (igf-1R) and Fork head transcription factor 1 (foxo1) mRNA level. The above results suggested that optimal taurine level could improve growth performance, hepatic capacity for glycolipid metabolism and insulin sensitivity, thus enhancing the utilisation of carbohydrates in grass carp. Based on SGR, dietary optimal tributyrin taurine supplementation in grass carp was estimated to be 0·08 %.


Subject(s)
Carps , Gastrointestinal Microbiome , Animals , Proto-Oncogene Proteins c-akt , Receptor, Insulin , Carps/metabolism , Phosphatidylinositol 3-Kinases , Fish Proteins/genetics , Diet/veterinary , Dietary Supplements/analysis , RNA, Messenger/metabolism , Carbohydrates , Glucose , Animal Feed/analysis , Immunity, Innate
9.
Article in English | MEDLINE | ID: mdl-38141372

ABSTRACT

Fishmeal is an important protein source for largemouth bass (Micropterus salmoides). However, the production of fishmeal is decreasing each year and the price of fishmeal is rising. Therefore, it is necessary to find new high-quality and suitable protein sources. This study used a mixed animal protein source (chicken meal:blood meal:shrimp meal:brewer's yeast = 50:12.5:25:12.5) to replace fishmeal. Using a 48 % fishmeal group as the control, five diets with different fishmeal levels (FM48, FM44, FM40, FM36, FM32) were established to determine the effects on largemouth bass growth performance, liver health and intestinal health. There were no significant differences in the percentage weight gain, specific growth rate, feed conversion rate, and condition factor of largemouth bass, but the hepatosomatic and viscerosomatic indexes were significantly decreased when the dietary fishmeal level was reduced to 40 %. The content of taurine, glycine, and histidine was significantly reduced in the muscle of largemouth bass fed the FM32 diet compared with those fed the FM48 and FM44 diets. Mixed protein feed reduced the total bile acid content and increased the low-density lipoprotein cholesterol content in the plasma of largemouth bass. The replacement of fishmeal with the mixed protein source inhibited the expression of tnf-α and caspase 3 and enhanced the expression of apoa1 in the liver, as well as enhancing the protein expression of FXR and SREBP and inhibiting the protein expression of P-PPARA in the liver. The intestinal pparα expression was suppressed when dietary fishmeal was replaced. When dietary fishmeal decreased, the mucosal folds height and muscle layer thickness also decreased. In conclusion, partial replacement of fishmeal with the mixed protein source did not affect the growth performance, while lipid metabolism and intestinal health were negatively affected when dietary fishmeal levels were below 36 %.


Subject(s)
Bass , Animals , Bass/physiology , Diet , Liver/metabolism
10.
Front Immunol ; 14: 1301033, 2023.
Article in English | MEDLINE | ID: mdl-38077360

ABSTRACT

Glutamine has been used to improve intestinal development and immunity in fish. We previously found that dietary glutamine enhances growth and alleviates enteritis in juvenile hybrid groupers (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). This study aimed to further reveal the protective role of glutamine on glycinin-induced enteritis by integrating transcriptome, proteome, and microRNA analyses. Three isonitrogenous and isolipidic trial diets were formulated: a diet containing 10% glycinin (11S group), 10% glycinin diet supplemented with 2% alanine-glutamine (Gln group), and a diet containing neither glycinin nor alanine-glutamine (fishmeal, FM group). Each experimental diet was fed to triplicate hybrid grouper groups for 8 weeks. The analysis of intestinal transcriptomic and proteomics revealed a total of 570 differentially expressed genes (DEGs) and 169 differentially expressed proteins (DEPs) in the 11S and FM comparison group. Similarly, a total of 626 DEGs and 165 DEPs were identified in the Gln and 11S comparison group. Integration of transcriptome and proteome showed that 117 DEGs showed consistent expression patterns at both the transcriptional and translational levels in the Gln and 11S comparison group. These DEGs showed significant enrichment in pathways associated with intestinal epithelial barrier function, such as extracellular matrix (ECM)-receptor interaction, tight junction, and cell adhesion molecules (P < 0.05). Further, the expression levels of genes (myosin-11, cortactin, tenascin, major histocompatibility complex class I and II) related to these pathways above were significantly upregulated at both the transcriptional and translational levels (P < 0.05). The microRNA results showed that the expression levels of miR-212 (target genes colla1 and colla2) and miR-18a-5p (target gene colla1) in fish fed Gln group were significantly lower compared to the 11S group fish (P < 0.05). In conclusion, ECM-receptor interaction, tight junction, and cell adhesion molecules pathways play a key role in glutamine alleviation of hybrid grouper enteritis induced by high-dose glycinin, in which miRNAs and target mRNAs/proteins participated cooperatively. Our findings provide valuable insights into the RNAs and protein profiles, contributing to a deeper understanding of the underlying mechanism for fish enteritis.


Subject(s)
Bass , Enteritis , MicroRNAs , Animals , Alanine , Cell Adhesion Molecules/genetics , Enteritis/chemically induced , Gene Expression Profiling , Glutamine , MicroRNAs/genetics , Proteome/genetics , Proteomics
11.
Animals (Basel) ; 13(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067061

ABSTRACT

The hybrid grouper (♀ Epinephelus fuscoguttatus × â™‚ E. lanceolatus) is a new species of grouper crossed from giant grouper (E. lanceolatus) as the male parent and brown-marbled grouper (E. fuscoguttatus) as the female parent. We hypothesized that optimal levels of dietary protein may benefit liver function. High-lipid diets are energetic feeds that conserve protein and reduce costs, and are a hot topic in aquaculture today. Therefore, the objective of the research is to investigated the effects of dietary protein level in high-lipid diets on serum and liver biochemistry, liver histology, and liver immune and antioxidant indexes and gene mRNA expression of the juvenile hybrid grouper (♀ Epinephelus fuscoguttatus × â™‚ E. lanceolatus). Six iso-lipidic (161 g/kg) diets were formulated containing graded levels of protein (510 as control, 480,450, 420, 390 and 360 g/kg). Each treatment consisted of three replicates and 30 fish (6.70 ± 0.02 g) in one replicate. After an 8-week feeding experiment, the results indicated the following: (1) With the decreasing of dietary protein level, the specific growth rate (SGR) of groupers increased gradually and then decreased; SGRs of the 390 and 360 g/kg groups were significantly lower than other groups (p < 0.05). (2) In terms of serum and liver, the activity of antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD), and the total antioxidant capacity (T-AOC) content, and the activity of immune enzymes such as lysozyme (LYS) and immunoglobulin (IgM) was significantly increased under the appropriate protein level. (3) Based on liver histology, we know that high or low dietary protein levels cause liver damage. (4) Dietary protein levels can significantly affect the mRNA expression levels of an anti-inflammatory factor gene (tgfß), pro-inflammatory factor genes (il6, il8), heat shock proteins, and antioxidant and immune genes (hsp70 and hsp90, gpx, nrf2, keap1). It is concluded that the appropriate protein level can promote the growth performance of groupers, improve antioxidant activity and immune enzyme activity in serum and liver, and enhance the expression of immune genes.

12.
Aquac Nutr ; 2023: 1393994, 2023.
Article in English | MEDLINE | ID: mdl-37936718

ABSTRACT

This study investigated tea polyphenols (TP), α-lipoic acid (ALA) and their joint use on the antioxidant and lipid metabolic performance of hybrid grouper (♀Epinephelus fuscoguttatus × â™‚E. lanceolatu) took food with high-fat diets. Six high-lipid diets with isonitrogen (50% of dry matter) and isolipid (17% of dry value) were designed, in which a total content of 1,000 mg/kg additives were added to each group except for the control group (FL). The additives addition ratios in each group were ALA (AL), TP (PL), ALA : TP = 1 : 1 (EL), ALA : TP = 1 : 2 (OL), ALA : TP = 2 : 1 (TL). Each diet was divided into three repeat groups with 30 tails (6.84 ± 0.01 g) in each group and fed for 8 weeks. The consequences were as follows: (1) the highest weight gain rate, specific growth rate, as well as the lowest feed conversion ratio and ingestion rate were discovered in the OL team, which were opposite to the TL group. (2) The body fat content and muscle fat content in the fish oil group were the lowest (P < 0.05), while those of the TL group were the highest. (3) Serum catalase, glutathione peroxidase, total antioxidant capacity, and superoxide dismutase activities were the highest, and the content of reactive oxygen species was the lowest in the OL group. (4) The OL group has the highest hepatic lipase activity and the lowest very low-density lipoprotein content of the liver. In contrast, the TL group had the highest fatty acid synthetase (FAS) activity (P < 0.05). (5) The oil-red aspects of liver tissue displayed lipid particles in other groups were reduced to different degrees compared with FL group, and the OL group showed the best lipid-lowering effect. (6) Compared with the FL group, the relative expressions of FAS, acetyl-CoA carboxylase (acc), and apolipoprotein b-100 (apoB100) genes in the liver were decreased. The relative expressions of lipoprotein lipase (lpl) and peroxisome proliferators-activated receptors-α (pparα) genes related to lipid catabolism were increased, among which the OL group had the most significant change (P < 0.05). (7) According to the 7-day challenge test of Vibrio alginolyticus, the OL group had the highest survival rate. To sum up, both ALA and TP have positive effects on relieving the lipid metabolism disorder of hybrid grouper. If they are jointly used, adding ALA : TP in a ratio of 1 : 2 (OL) may have the best effect, and an addition ratio of 2 : 1 (TL) may inhibit the hybrid grouper growth and increase the feeding cost.

13.
Aquac Nutr ; 2023: 8814498, 2023.
Article in English | MEDLINE | ID: mdl-37908497

ABSTRACT

It has been found that high-lipid diets (HLDs) disrupt lipid metabolism in fish, leading to an excessive accumulation of lipids in various tissues of the fish body. The objective of this study was to investigate if the inclusion of lycopene (LCP) in an HLD may mitigate the adverse consequences of excessive dietary lipid intake in hybrid grouper (♀ Epinephelus fuscoguttatus × â™‚ E. lanceolatus). The experimental design incorporated a control group (L0), which was administered a diet consisting of 42% protein and 16% lipid. The diets for groups L1, L2, and L3 were developed by augmenting the control diet with 100, 200, and 400 mg/kg LCP, respectively. The duration of the trial spanned a period of 42 days. The results of the study showed that the weight gain rate (WGR) and protein efficiency ratio (PER) of the three LCP treatment groups (L1, L2, and L3) tended to increase and then decrease, with a significant increase in WGR and PER in L2 (P < 0.05). Visceral somatic index and hepatic somatic index tended to decrease and then increase in all treatment groups, with a significant decrease in L2 (P < 0.05). In serum dietary LCP significantly reduced triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL) content and significantly increased high-density lipoprotein (HDL) content (P < 0.05). In the liver, dietary LCP reduced TC, TG, and very LDL levels and improved lipoprotein lipase, hepatic lipase, fatty acid (FA) synthetase, and acetyl-CoA carboxylase activities. The number and area of hepatic lipid droplets decreased significantly with increasing LCP content. In the liver, the addition of appropriate levels of LCP significantly upregulated lipoprotein lipase (lpl) and peroxisome proliferator-activated receptor α (pparα). In summary, dietary LCP improves growth and reduces lipid deposition in the liver of hybrid grouper by increasing lipolytic metabolism and decreasing FA synthesis. Under the experimental conditions, the fitted curve analysis showed that the recommended LCP additions to the high lipid diet for juvenile hybrid grouper were 200-300 mg/kg.

14.
Int J Biol Macromol ; 253(Pt 8): 127550, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37865354

ABSTRACT

As digestive and immune organs of animals, the gut was frequently used to evaluate the health status of aquatic animals. In previous oil source alternatives study, corn oil (CO) had been found to induce gut inflammation, while olive oil (OO) had been found to be effective in protecting intestinal health. Three diets with different oil sources (fish oil, CO, OO) were formulated for an 8-week culture experiment, and it was proposed to combine 16S sequencing and transcriptome sequencing analysis to preliminarily elucidate the damage/protection mechanism of CO and OO on the gut health of grouper (♀ Epinephelus fuscoguttatus × â™‚ E. lanceolatu). We found that CO indeed damaged to gut health and destroyed the gut structure, while OO had a positive outcome in protecting the gut structure, promoting digestibility and relieving enteritis. Photobacterium, Romboutsia and Epulopiscium were significantly enriched in OO group and Staphylococcus were significantly enriched in CO group. Transcriptome sequencing further revealed CO could activated Complement and coagulation cascades, Staphylococcus aureus infection, Systemic lupus erythematosus, and Tuberculosis pathways; conversely, OO activated B-cell signaling receptors, promoted B-cell proliferation and apoptosis, and thus activated B-cell signaling pathways to enhance immunity, whereas OO can regulate IL17 signaling pathway and TNF signaling pathway to inhibit NF-κB signaling pathway to reduce pro-inflammatory response. By integrating the microbiome and transcriptome, further identified all differential microorganisms were directly and significantly correlated with differential genes, and Clostridium_sensu_stricto_1, Romboutsia, Staphylococcus might as the core regulates the expression of differential gene in the organism. These results reveal that different oil sources alter gut gene expression mainly by modulating the composition and abundance of gut microbiota, further regulating the health status of the gut. Gut microbiota could be used as biomarkers to provide reference and solutions for the mitigation of inflammation in aquatic animals.


Subject(s)
Bass , Microbiota , Animals , Bass/genetics , Olive Oil , Corn Oil , Transcriptome , Inflammation
15.
Animals (Basel) ; 13(19)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37835751

ABSTRACT

Malondialdehyde (MDA) is the dominant component of lipid peroxidation products. Improper storage and transportation can elevate the lipid deterioration MDA content of diets to values that are unsafe for aquatic animals and even hazardous to human health. The study aimed to investigate the effect of dietary MDA on growth performance and digestive function of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatu♂). Six isoproteic and isolipidic diets were formulated to contain 0.03, 1.11, 2.21, 4.43, 8.86 and 17.72 mg/kg MDA, respectively. The study shows that the increased dietary MDA content linearly reduced the growth rate, feed utilization, body index and body lipid content of hybrid grouper, while the low dose of dietary MDA (≤2.21 mg/kg) created no difference. Similarly, dietary MDA inclusion linearly depressed the activities of intestinal digestive and absorptive enzymes as well as antioxidant enzymes, enhanced the serum diamine oxidase activity, endotoxin level and intestinal MDA content. A high dose of MDA (≥4.43 mg/kg) generally impaired the gastric and intestinal mucosa, up-regulated the relative expression of Kelch-like ECH-associated protein 1 but down-regulated the relative expression of nuclear factor erythroid 2-related factor 2 in hindgut. In conclusion, the effect of MDA on hybrid grouper showed a dose-dependent effect in this study. A low dose of dietary MDA had limited effects on growth performance and intestinal health of hybrid grouper, while a high concentration damaged the gastrointestinal structure, depressed the intestinal digestive and antioxidant functions, and thereby impaired the growth and health of hybrid grouper.

16.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37715969

ABSTRACT

The mammalian G protein-coupled bile acid receptor 1 (TGR5) is involved in the inflammatory response. However, the functions of TGR5 in the immune response of fish remain unclear. In this study, the full-length sequence of tgr5 from hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) was cloned, and the function of TGR5 in the immune response was explored. The results showed that the ORF of tgr5 gene in hybrid grouper was 1029 bp and encoded 342 amino acids. Activation of TGR5 by INT-777 significantly decreased the activities and mRNA expression of TNFα and IL1ß, whereas inhibition of TGR5 by SBI-115 showed the opposite effect. SBI-115 treatment significantly increased the expression of phosphorylated inhibitor κB α (p-IKBα) protein. After the INT-777 treatment, the concentration of protein kinase C (PKC) and expression of the p38 mitogen-activated protein kinases (p38a), p38b and p38c, were significantly decreased in vivo. INT-777 agonist significantly decreased the expression of phosphorylated phosphoinositide 3-kinase (p-PI3K) protein and the ratio of phosphorylated and nonphosphorylated serine/threonine-protein kinase (p-AKT/AKT). In conclusion, activation of hepatic TGR5 inhibited the PKC/P38 MAPK, PI3K/AKT, NFκB signaling pathway and improved hepatic immune responses of hybrid grouper in vivo and in vitro.


Recent studies have shown that mammalian G protein-coupled bile acid receptor 1 (TGR5) is involved in inflammatory response. However, the functions of TGR5 in immune response of hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) remain unclear. In this study, the full-length sequence of tgr5 from hybrid grouper was cloned and characterized for the first time, and the functions of TGR5 in the immune response was explored by activating/inhibiting hepatic TGR5 in vivo and in vitro. These results showed that activation of hepatic TGR5 inhibited PKC/P38 MAPK and PI3K/AKT signaling, attenuated the NFκB pathway, and improved the hepatic immune responses of hybrid grouper in vivo and in vitro. The inhibition of TGR5 had the opposite effects. Understanding the functions of hepatic TGR5 may help to develop management strategies to reduce the liver inflammation in fish or other animals.


Subject(s)
Bass , Phosphatidylinositol 3-Kinases , Animals , Bass/genetics , Bile Acids and Salts , GTP-Binding Proteins/pharmacology , Immunity, Innate , NF-kappa B/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction
17.
Animals (Basel) ; 13(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37760294

ABSTRACT

An analysis of the extent of the effect of steroidal saponin addition on glucose and lipid metabolism in hybrid grouper liver was performed at the transcriptomic and metabolomic levels. Feeds (52% crude protein, 14% crude lipid) were prepared containing 0% (S0), 0.1% (S0.1), and 0.2% (S0.2) steroidal saponins. After eight weeks of feeding trial, compared to the S0 group, the activities of serum albumin, alanine aminotransferase, and aspartate transaminase were significantly lower and the activities of lysozyme, acid phosphatase, and alkaline phosphatase were significantly higher in the S0.1 group (p < 0.05). The superoxide dismutase, catalase, and glutathione peroxidase activities in the livers of the S0.1 group were significantly higher than those of the S0 group, while the malondialdehyde content was significantly lower than that of the S0 group (p < 0.05). There were forty-two differentially expressed genes and thirty-two differential metabolites associated with glucose and lipid metabolism enriched using KEGG and GO. In the S0 group, the expression of prostaglandin-endoperoxide synthase 1, prostaglandin E synthase 1, and thromboxane-2 synthase mRNA was significantly higher than in the S0.1 group (p < 0.05). The expression levels of genes in the S0 group were significantly higher than those in the S0.1 group (p < 0.05), including for glycogen synthase kinase, glucose-6-phosphatase catalytic subunit 2, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, glucose transporter 4, and malate dehydrogenase. The expression of mRNA such as fatty acid synthase, acetyl-CoA carboxylase, and sterol regulatory element-binding protein 1 was significantly lower in the S0.1 group than in the S0 group, while the expression of carnitine acyltransferase 1, acyl-CoA synthetase, and acyl-CoA dehydrogenase genes was significantly higher in the S0 group (p < 0.05). In summary, glycogen synthesis, gluconeogenesis, and the arachidonic acid metabolism pathway were inhibited by 0.1% steroidal saponins, and glycogenolysis, glycolysis, the tricarboxylic acid cycle, and the fatty acid ß-oxidation pathway were activated. This study aims to provide a reference for the formulation of grouper feeds with a higher crude-lipid level.

18.
Fish Shellfish Immunol ; 141: 109033, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37640123

ABSTRACT

Soy saponins are generally known to have negative effects on growth and the intestines of aquatic animals, and appropriate levels of sodium butyrate (NaB) may provide some mitigating effects. We investigated the effects of low and high levels of soy saponin and the protective effects of NaB (based on high level of soy saponin) on growth, serum cytokines, distal intestinal histopathology, and inflammation in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). The experiment included four groups: fishmeal group (FM, 0.00% saponin and 0.00% NaB), low saponin group (SL, 0.30% saponin and 0.00% NaB), high saponin group (SH, 1.50% saponin and 0.00% NaB) and high saponin with NaB group (SH-NaB, 1.50% saponin and 0.13% NaB). The results showed compared to FM, the final body weight (FBW) and weight gain (WG) were significantly higher and lower in SL and SH, respectively (P < 0.05). Compared to SH, the FBW and WG were significant higher in SH-NaB (P < 0.05). In the serum, compared to FM, the interferon γ (IFN-γ) and interleukin-1ß (IL-1ß) levels in SH were significantly increased (P < 0.05). Compared to SH, the IFN-γ level was significantly decreased in SH-NaB (P < 0.05). In the distal intestine, based on Alcian Blue-Periodic Acid-Schiff (AB-PAS) observation, the goblet cell/µm was significantly increased and decreased in the SL and SH, respectively, compared to FM. The intestinal diameter/plica height ratio in the SH was significantly higher than those in the FM, SL and SH-NaB (P < 0.05). The NO and ONOO- levels in the SH were significantly higher than that in FM and SL (P < 0.05). At the transcriptional level in the distal intestine, compared to FM, the mRNA levels of tumor necrosis factor (tnfα), il1ß, interleukin-8 (il8) and ifnγ were significantly up-regulated in the SH (P < 0.05). Compared to the SH, tnfα, il8 and ifnγ were significantly down-regulated in the SH-NaB (P < 0.05). Compared to the FM, the mRNA levels of claudin3, claudin15, zo2 and zo3 were significantly up-regulated in the SL (P < 0.05). The mRNA levels of occludin, claudin3, claudin12, claudin15, zo1, zo2 and zo3 were significantly down-regulated in the SH compared to the FM (P < 0.05). Additionally, compared to the SH, the mRNA levels of occludin, claudin3, claudin12, claudin15, zo1, zo2 and zo3 were significantly up-regulated in the SH-NaB (P < 0.05). After the 7-day Vibrio parahaemolyticus challenge test, the survival was significantly higher and lower in the SL and SH, respectively, compared to FM (P < 0.05). Overall, low and high levels of soy saponins had positive and negative effects on growth, disease resistance, serum cytokines, and distal intestinal development and anti-inflammation, respectively, in hybrid grouper. NaB effectively increased disease resistance and improved distal intestinal inflammation in hybrid grouper, but the effects of NaB were mainly observed in improving distal intestinal tight junctions.

19.
Int J Biol Macromol ; 251: 126297, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37591422

ABSTRACT

Four diets containing 8 % cellulose, low methyl-esterified pectin (LMP), high methyl-esterified pectin (HMP) and MMP (half LMP and half HMP) were designed to evaluate the potential mechanisms by which different esterification degrees of pectin drive intestinal microbiota and their metabolites modulating the intestinal health of Micropterus salmoides. The results showed that both dietary LMP and HMP consistently upregulated intestinal zonula occludens protein 1 (Zo-1), Caludin-1, and Caludin-4, and downregulated intestinal tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), and interleukin-1 beta (IL-1ß) gene expression (P < 0.05). Dietary HMP separately upregulated intestinal Occludin, nuclear factor erythroid2-related factor 2 (Nrf2), B-cell lymphoma-2 (Bcl-2), and Bcl-2 associated agonist of cell death (BAD) gene expression, as well as the digesta propionate content, OTUs, Sobs, Shannon, Chao, and ACE indices (P < 0.05), whereas dietary LMP decreased digesta arginine, 4-aminobutyric, L-tyrosine, and phenylalanine contents (P < 0.05). Moreover, dietary HMP decreased plasma lipopolysaccharide and d-lactic acid contents and increased intestinal superoxide dismutase and glutathione peroxidase activities and immunoglobulin (Ig) receptor and IgM levels (P < 0.05). Collectively, dietary HMP improves intestinal health by increasing intestinal flora α-diversity and enhancing intestinal mechanical barrier, anti-inflammatory, antioxidant, and immune functions. On the contrary, the interference of dietary LMP with butyrate, tyrosine, arginine, and 4-aminobutyric acid metabolism is the main reason for its detrimental effects on intestinal health.

20.
Fish Shellfish Immunol ; 141: 109003, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37604266

ABSTRACT

Glutamine addition can improve immunity and intestinal development in fish. This study examined the protective roles of glutamine on growth suppression and enteritis induced by glycinin in juvenile hybrid groupers (female Epinephelus fuscoguttatus × male Epinephelus lanceolatus). The experiment set four isonitrogenous and isolipidic trial diets: a diet containing 10% glycinin (11S), 10% of 11S diet supplemented with 1% or 2% alanine-glutamine (1% or 2% Ala-Gln), and a diet containing neither 11S nor Ala-Gln (FM). A feeding trial was conducted in hybrid grouper for 8 weeks. Weight gain and specific growth rates in Groups 1% and 2% Ala-Gln were significantly higher than those of the 11S group but were similar to those of the FM group. The intestinal muscular layer thickness, plica height and width of the 2% Ala-Gln group were significantly higher than those of Group 11S. The enterocyte proliferation efficiency of the 11S group was significantly lower compared to other groups. Compared with the 11S group, Groups 1% and 2% Ala-Gln fish had increased intestinal lysozyme activities, complement 3 and immunoglobulin M as well as cathelicidin contents. The mRNA levels of tnf-α, il-1ß, ifn-α, and hsp70 genes were more downregulated in Groups 1% and 2% Ala-Gln than in Group 11S. Compared with FM group, fish from the 11S group had significantly lower mRNA levels of myd88, ikkß, and nf-κb p65 genes. These three values in the 2% Ala-Gln group were significantly lower than those in Group 11S but not significantly different from those of Group FM. The relative abundance of Vibrio in Group 11S was higher than that in Groups FM and 2% Ala-Gln. Intestinal glutamine, glutaminase, glutamic acid, α-ketoglutarate, malate dehydrogenase and ATP contents were higher in Groups 1% and 2% Ala-Gln than in Group 11S. These results suggest that glutamine is a useful feed additive to enhance growth and intestinal immunity, alleviate inflammation, and modulate gut microbiota in hybrid grouper fed high-dose glycinin.


Subject(s)
Bass , Glutamine , Animals , Female , Male , Animal Feed/analysis , Diet/veterinary , RNA, Messenger/genetics , Soybean Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...