Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
1.
DNA Repair (Amst) ; 131: 103572, 2023 11.
Article En | MEDLINE | ID: mdl-37742405

The DNA damage response (DDR) is a crucial biological mechanism for maintaining cellular homeostasis in living organisms. This complex process involves a cascade of signaling pathways that orchestrate the sensing and processing of DNA lesions. Perturbations in this process may cause DNA repair failure, genomic instability, and irreversible cell cycle arrest, known as cellular senescence, potentially culminating in tumorigenesis. Persistent DDR exerts continuous and cumulative pressure on global chromatin dynamics, resulting in altered chromatin structure and perturbed epigenetic regulations, which are highly associated with cellular senescence and aging. Sustained DDR activation and heterochromatin changes further promote senescence-associated secretory phenotype (SASP), which is responsible for aging-related diseases and cancer development. In this review, we discuss the diverse mechanisms by which DDR leads to cellular senescence and triggers SASP, together with the evidence for DDR-induced chromatin remodeling and epigenetic regulation in relation to aging.


Chromatin , Epigenesis, Genetic , Cellular Senescence/genetics , DNA Damage
2.
J Cell Sci ; 136(11)2023 06 01.
Article En | MEDLINE | ID: mdl-37288672

Chromosomal aneuploidy has been associated with aging. However, whether and how chromosomal instability (CIN), a condition frequently seen in cancer cells in which chromosome missegregation occurs at a high rate, is associated with aging is not fully understood. Here, we found that primary fibroblasts isolated from aged mice (24 months old) exhibit an increased level of chromosome missegregation and micronucleation compared with that from young mice (2 months old), concomitant with an increased rate of aneuploid cells, suggesting the emergence of CIN. Reactive oxygen species were increased in fibroblasts from aged mice, which was accompanied with mitochondrial functional decline, indicating that they are under oxidative stress. Intriguingly, antioxidant treatments reduced chromosome missegregation and micronucleation rates in cells from aged mice, suggesting a link between oxidative stress and CIN. As a cause of CIN, we found that cells from aged mice are under replication stress, which was ameliorated by antioxidant treatments. Microtubule stabilization is a potential cause of CIN promoted by replication stress. Our data demonstrate the emergence of CIN with age, and suggest an unprecedented link between oxidative stress and CIN in aging.


Mitosis , Neoplasms , Mice , Animals , Antioxidants/pharmacology , Chromosome Segregation , Chromosomal Instability , Aneuploidy , Fibroblasts , Oxidative Stress , Neoplasms/genetics
3.
J Biochem ; 174(3): 239-252, 2023 Jul 31.
Article En | MEDLINE | ID: mdl-37094356

Ferroptosis is a regulated cell death induced by iron-dependent lipid peroxidation. The heme-responsive transcription factor BTB and CNC homology 1 (BACH1) promotes ferroptosis by repressing the transcription of genes involved in glutathione (GSH) synthesis and intracellular labile iron metabolism, which are key regulatory pathways in ferroptosis. We found that BACH1 re-expression in Bach1-/- immortalized mouse embryonic fibroblasts (iMEFs) can induce ferroptosis upon 2-mercaptoethanol removal, without any ferroptosis inducers. In these iMEFs, GSH synthesis was reduced, and intracellular labile iron levels were increased upon BACH1 re-expression. We used this system to investigate whether the major ferroptosis regulators glutathione peroxidase 4 (Gpx4) and apoptosis-inducing factor mitochondria-associated 2 (Aifm2), the gene for ferroptosis suppressor protein 1, are target genes of BACH1. Neither Gpx4 nor Aifm2 was regulated by BACH1 in the iMEFs. However, we found that BACH1 represses AIFM2 transcription in human pancreatic cancer cells. These results suggest that the ferroptosis regulators targeted by BACH1 may vary across different cell types and animal species. Furthermore, we confirmed that the ferroptosis induced by BACH1 re-expression exhibited a propagating effect. BACH1 re-expression represents a new strategy for inducing ferroptosis after GPX4 or system Xc- suppression and is expected to contribute to future ferroptosis research.


Ferroptosis , Fibroblasts , Animals , Humans , Mice , Fibroblasts/metabolism , Ferroptosis/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Iron/metabolism , Glutathione/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism
4.
Cell Rep ; 41(9): 111723, 2022 11 29.
Article En | MEDLINE | ID: mdl-36450246

Accurate chromosome segregation requires timely activation of separase, a protease that cleaves cohesin during the metaphase-to-anaphase transition. However, the mechanism that maintains the inactivity of separase prior to this event remains unclear. We provide evidence that separase autocleavage plays an essential role in this process. We show that the inhibition of separase autocleavage results in premature activity before the onset of anaphase, accompanied by the formation of chromosomal bridges and spindle rocking. This deregulation is attributed to the reduced binding of cyclin B1 to separase that occurs during the metaphase-to-anaphase transition. Furthermore, when separase is mutated to render the regulation by cyclin B1 irrelevant, which keeps separase in securin-binding form, the deregulation induced by autocleavage inhibition is rescued. Our results reveal a physiological role of separase autocleavage in regulating separase, which ensures faithful chromosome segregation.


Anaphase , Chromosome Segregation , Separase , Cyclin B1 , Metaphase
5.
Brain Commun ; 4(5): fcac220, 2022.
Article En | MEDLINE | ID: mdl-36106092

CHAMP1 is a gene associated with intellectual disability, which was originally identified as being involved in the maintenance of kinetochore-microtubule attachment. To explore the neuronal defects caused by CHAMP1 deficiency, we established mice that lack CHAMP1. Mice that are homozygous knockout for CHAMP1 were slightly smaller than wild-type mice and died soon after birth on pure C57BL/6J background. Although gross anatomical defects were not found in CHAMP1 -/- mouse brains, mitotic cells were increased in the cerebral cortex. Neuronal differentiation was delayed in CHAMP1 -/- neural stem cells in vitro, which was also suggested in vivo by CHAMP1 knockdown. In a behavioural test battery, adult CHAMP1 heterozygous knockout mice showed mild memory defects, altered social interaction, and depression-like behaviours. In transcriptomic analysis, genes related to neurotransmitter transport and neurodevelopmental disorder were downregulated in embryonic CHAMP1 -/- brains. These results suggest that CHAMP1 plays a role in neuronal development, and CHAMP1-deficient mice resemble some aspects of individuals with CHAMP1 mutations.

6.
Cancer Sci ; 113(8): 2727-2737, 2022 Aug.
Article En | MEDLINE | ID: mdl-35662350

Most cancer cells show chromosomal instability (CIN), a condition in which chromosome missegregation occurs at high rates. Growing evidence suggests that CIN is not just a consequence of, but a driving force for, oncogenic transformation, although the relationship between CIN and tumorigenesis has not been fully elucidated. Here we found that conventional two-dimensional (2D) culture of HeLa cells, a cervical cancer-derived cell line, was a heterogenous population containing cells with different CIN levels. Although cells with high-CIN levels (high-CIN cells) grew more slowly compared with cells with low-CIN levels (low-CIN cells) in 2D monolayer culture, they formed tumors in nude mice and larger spheres in three-dimensional (3D) culture, which was more representative of the in vivo environment. The duration of mitosis was longer in high-CIN cells, reflecting their higher mitotic defects. Single-cell genome sequencing revealed that high-CIN cells exhibited a higher karyotype heterogeneity compared with low-CIN cells. Intriguingly, the karyotype heterogeneity was reduced in the spheres formed by high-CIN cells, suggesting that cells with growth advantages were selected, although genomic copy number changes specific for spheres were not identified. When we examined gene expression profiles, genes related to the K-ras signaling were upregulated, while those related to the unfolded protein response were downregulated in high-CIN cells in 3D culture compared with 2D culture, suggesting the relevance of these genes for their survival. Our data suggested that, although CIN is disadvantageous in monolayer culture, it promotes the selection of cells with growth advantages under in vivo environments, which may lead to tumorigenesis.


Chromosomal Instability , Mitosis , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Chromosomal Instability/genetics , HeLa Cells , Humans , Mice , Mice, Nude
7.
Oncogene ; 41(19): 2706-2718, 2022 05.
Article En | MEDLINE | ID: mdl-35393543

DNA double-strand break (DSB) repair-pathway choice regulated by 53BP1 and BRCA1 contributes to genome stability. 53BP1 cooperates with the REV7-Shieldin complex and inhibits DNA end resection to block homologous recombination (HR) and affects the sensitivity to inhibitors for poly (ADP-ribose) polymerases (PARPs) in BRCA1-deficient cells. Here, we show that a REV7 binding protein, CHAMP1 (chromosome alignment-maintaining phosphoprotein 1), has an opposite function of REV7 in DSB repair and promotes HR through DNA end resection together with POGZ (POGO transposable element with ZNF domain). CHAMP1 was recruited to laser-micro-irradiation-induced DSB sites and promotes HR, but not NHEJ. CHAMP1 depletion suppressed the recruitment of BRCA1, but not the recruitment of 53BP1, suggesting that CHAMP1 regulates DSB repair pathway in favor of HR. Depletion of either CHAMP1 or POGZ impaired the recruitment of phosphorylated RPA2 and CtIP (CtBP-interacting protein) at DSB sites, implying that CHAMP1, in complex with POGZ, promotes DNA end resection for HR. Furthermore, loss of CHAMP1 and POGZ restored the sensitivity to a PARP inhibitor in cells depleted of 53BP1 together with BRCA1. These data suggest that CHAMP1and POGZ counteract the inhibitory effect of 53BP1 on HR by promoting DNA end resection and affect the resistance to PARP inhibitors.


DNA Breaks, Double-Stranded , Poly(ADP-ribose) Polymerase Inhibitors , BRCA1 Protein/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA/metabolism , DNA End-Joining Repair , DNA Repair , Homologous Recombination , Humans , Phosphoproteins/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Transposases/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism
8.
iScience ; 25(2): 103675, 2022 Feb 18.
Article En | MEDLINE | ID: mdl-35141499

Unsatisfied kinetochore-microtubule attachment activates the spindle assembly checkpoint to inhibit the metaphase-anaphase transition. However, some cells eventually override mitotic arrest by mitotic slippage. Here, we show that inactivation of TORC1 kinase elicits mitotic slippage in budding yeast and human cells. Yeast mitotic slippage was accompanied with aberrant aspects, such as degradation of the nucleolar protein Net1, release of phosphatase Cdc14, and anaphase-promoting complex/cyclosome (APC/C)-Cdh1-dependent degradation of securin and cyclin B in metaphase. This mitotic slippage caused chromosome instability. In human cells, mammalian TORC1 (mTORC1) inactivation also invoked mitotic slippage, indicating that TORC1 inactivation-induced mitotic slippage is conserved from yeast to mammalian cells. However, the invoked mitotic slippage in human cells was not dependent on APC/C-Cdh1. This study revealed an unexpected involvement of TORC1 in mitosis and provides information on undesirable side effects of the use of TORC1 inhibitors as immunosuppressants and anti-tumor drugs.

9.
Cancers (Basel) ; 13(18)2021 Sep 09.
Article En | MEDLINE | ID: mdl-34572757

Chromosomal instability (CIN) is commonly seen in cancer cells, and related to tumor progression and poor prognosis. Among the causes of CIN, insufficient correction of erroneous kinetochore (KT)-microtubule (MT) attachments plays pivotal roles in various situations. In this review, we focused on the previously unappreciated role of chromosome oscillation in the correction of erroneous KT-MT attachments, and its relevance to the etiology of CIN. First, we provided an overview of the error correction mechanisms for KT-MT attachments, especially the role of Aurora kinases in error correction by phosphorylating Hec1, which connects MT to KT. Next, we explained chromosome oscillation and its underlying mechanisms. Then we introduced how chromosome oscillation is involved in the error correction of KT-MT attachments, based on recent findings. Chromosome oscillation has been shown to promote Hec1 phosphorylation by Aurora A which localizes to the spindle. Finally, we discussed the link between attenuated chromosome oscillation and CIN in cancer cells. This link underscores the role of chromosome dynamics in mitotic fidelity, and the mutual relationship between defective chromosome dynamics and CIN in cancer cells that can be a target for cancer therapy.

10.
Biomed Res ; 42(5): 203-219, 2021.
Article En | MEDLINE | ID: mdl-34544996

Chromosome oscillation during metaphase is attenuated in cancer cell lines, concomitant with the reduction of Aurora A activity on kinetochores, which results in reduced mitotic fidelity. To verify the correlation between Aurora A activity, chromosome oscillation, and error correction efficiency, we developed a mathematical model of kinetochore-microtubule dynamics, based on stochastic attachment/detachment events regulated by Aurora A activity gradient centered at spindle poles. The model accurately reproduced the oscillatory movements of chromosomes, which were suppressed not only when Aurora A activity was inhibited, but also when it was upregulated, mimicking the situation in cancer cells. Our simulation also predicted efficient correction of erroneous attachments through chromosome oscillation, which was hampered by both inhibition and upregulation of Aurora A activity. Our model provides a framework to understand the physiological role of chromosome oscillation in the correction of erroneous attachments that is intrinsically related to Aurora A activity.


Chromosome Segregation , Kinetochores , Metaphase , Microtubules , Models, Theoretical
11.
Cancer Sci ; 112(9): 3711-3721, 2021 Sep.
Article En | MEDLINE | ID: mdl-34107118

Antimitotic drugs such as vinca alkaloids and taxanes cause mitotic cell death after prolonged mitotic arrest. However, a fraction of cells escape from mitotic arrest by undergoing mitotic slippage, which is related to resistance to antimitotic drugs. Tipping the balance to mitotic cell death thus can be a way to overcome the drug resistance. Here we found that depletion of a mitotic regulator, CHAMP1 (chromosome alignment-maintaining phosphoprotein, CAMP), accelerates the timing of mitotic cell death after mitotic arrest. Live cell imaging revealed that CHAMP1-depleted cells died earlier than mock-treated cells in the presence of antimitotic drugs that resulted in the reduction of cells undergoing mitotic slippage. Depletion CHAMP1 reduces the expression of antiapoptotic Bcl-2 family proteins, especially Mcl-1. We found that CHAMP1 maintains Mcl-1 expression both at protein and mRNA levels independently of the cell cycle. At the protein level, CHAMP1 maintains Mcl-1 stability by suppressing proteasome-dependent degradation. Depletion of CHAMP1 reduces cell viability, and exhibits synergistic effects with antimitotic drugs. Our data suggest that CHAMP1 plays a role in the maintenance of Mcl-1 expression, implying that CHAMP1 can be a target to overcome the resistance to antimitotic drugs.


Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasms/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Signal Transduction/genetics , A549 Cells , Animals , Antimitotic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Survival/drug effects , Cell Survival/genetics , Drug Resistance, Neoplasm/genetics , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Mitosis/drug effects , Mitosis/genetics , Neoplasms/genetics , Neoplasms/pathology , RNA Interference , Signal Transduction/drug effects , Transfection , Tumor Burden/genetics , Xenograft Model Antitumor Assays
12.
J Cell Biol ; 220(7)2021 07 05.
Article En | MEDLINE | ID: mdl-33988677

Most cancer cells show chromosomal instability, a condition where chromosome missegregation occurs frequently. We found that chromosome oscillation, an iterative chromosome motion during metaphase, is attenuated in cancer cell lines. We also found that metaphase phosphorylation of Hec1 at serine 55, which is mainly dependent on Aurora A on the spindle, is reduced in cancer cell lines. The Aurora A-dependent Hec1-S55 phosphorylation level was regulated by the chromosome oscillation amplitude and vice versa: Hec1-S55 and -S69 phosphorylation by Aurora A is required for efficient chromosome oscillation. Furthermore, enhancement of chromosome oscillation reduced the number of erroneous kinetochore-microtubule attachments and chromosome missegregation, whereas inhibition of Aurora A during metaphase increased such errors. We propose that Aurora A-mediated metaphase Hec1-S55 phosphorylation through chromosome oscillation, together with Hec1-S69 phosphorylation, ensures mitotic fidelity by eliminating erroneous kinetochore-microtubule attachments. Attenuated chromosome oscillation and the resulting reduced Hec1-S55 phosphorylation may be a cause of CIN in cancer cell lines.


Aurora Kinase A/genetics , Chromosomes/genetics , Cytoskeletal Proteins/genetics , Mitosis/genetics , Chromosome Segregation/genetics , HeLa Cells , Humans , Kinetochores , Microtubules/genetics , Phosphorylation/genetics , Spindle Apparatus/genetics
13.
Curr Biol ; 31(8): 1581-1591.e3, 2021 04 26.
Article En | MEDLINE | ID: mdl-33651990

The spindle-assembly checkpoint facilitates mitotic fidelity by delaying anaphase onset in response to microtubule vacancy at kinetochores. Following microtubule attachment, kinetochores receive microtubule-derived force, which causes kinetochores to undergo repetitive cycles of deformation; this phenomenon is referred to as kinetochore stretching. The nature of the forces and the relevance relating this deformation are not well understood. Here, we show that kinetochore stretching occurs within a framework of single end-on attached kinetochores, irrespective of microtubule poleward pulling force. An experimental method to conditionally interfere with the stretching allowed us to determine that kinetochore stretching comprises an essential process of checkpoint silencing by promoting PP1 phosphatase recruitment after the establishment of end-on attachments and removal of the majority of checkpoint-activating kinase Mps1 from kinetochores. Remarkably, we found that a lower frequency of kinetochore stretching largely correlates with a prolonged metaphase in cancer cell lines with chromosomal instability. Perturbation of kinetochore stretching and checkpoint silencing in chromosomally stable cells produced anaphase bridges, which can be alleviated by reducing chromosome-loaded cohesin. These observations indicate that kinetochore stretching-mediated checkpoint silencing provides an unanticipated etiology underlying chromosomal instability and underscores the importance of a rapid metaphase-to-anaphase transition in sustaining mitotic fidelity.


Chromosome Segregation , Kinetochores , M Phase Cell Cycle Checkpoints , Spindle Apparatus , Anaphase , Cell Line, Tumor , Chromosomal Instability , Humans , Microtubules
14.
Cell Death Dis ; 12(4): 332, 2021 03 29.
Article En | MEDLINE | ID: mdl-33782392

Ferroptosis regulated cell death due to the iron-dependent accumulation of lipid peroxide. Ferroptosis is known to constitute the pathology of ischemic diseases, neurodegenerative diseases, and steatohepatitis and also works as a suppressing mechanism against cancer. However, how ferroptotic cells affect surrounding cells remains elusive. We herein report the transfer phenomenon of lipid peroxidation and cell death from ferroptotic cells to nearby cells that are not exposed to ferroptotic inducers (FINs). While primary mouse embryonic fibroblasts (MEFs) and NIH3T3 cells contained senescence-associated ß-galactosidase (SA-ß-gal)-positive cells, they were decreased upon induction of ferroptosis with FINs. The SA-ß-gal decrease was inhibited by ferroptotic inhibitors and knockdown of Atg7, pointing to the involvement of lipid peroxidation and activated autophagosome formation during ferroptosis. A transfer of cell culture medium of cells treated with FINs, type 1 or 2, caused the reduction in SA-ß-gal-positive cells in recipient cells that had not been exposed to FINs. Real-time imaging of Kusabira Orange-marked reporter MEFs cocultured with ferroptotic cells showed the generation of lipid peroxide and deaths of the reporter cells. These results indicate that lipid peroxidation and its aftereffects propagate from ferroptotic cells to surrounding cells, even when the surrounding cells are not exposed to FINs. Ferroptotic cells are not merely dying cells but also work as signal transmitters inducing a chain of further ferroptosis.


Autophagy/genetics , Cell Death/genetics , Ferroptosis/genetics , Lipid Peroxidation/genetics , Animals , Humans , Mice
15.
Sci Rep ; 9(1): 18622, 2019 12 09.
Article En | MEDLINE | ID: mdl-31819079

The conserved serine-threonine kinase, Cdc7, plays a crucial role in initiation of DNA replication by facilitating the assembly of an initiation complex. Cdc7 is expressed at a high level and exhibits significant kinase activity not only during S-phase but also during G2/M-phases. A conserved mitotic kinase, Aurora B, is activated during M-phase by association with INCENP, forming the chromosome passenger complex with Borealin and Survivin. We show that Cdc7 phosphorylates and stimulates Aurora B kinase activity in vitro. We identified threonine-236 as a critical phosphorylation site on Aurora B that could be a target of Cdc7 or could be an autophosphorylation site stimulated by Cdc7-mediated phosphorylation elsewhere. We found that threonines at both 232 (that has been identified as an autophosphorylation site) and 236 are essential for the kinase activity of Aurora B. Cdc7 down regulation or inhibition reduced Aurora B activity in vivo and led to retarded M-phase progression. SAC imposed by paclitaxel was dramatically reversed by Cdc7 inhibition, similar to the effect of Aurora B inhibition under the similar situation. Our data show that Cdc7 contributes to M-phase progression and to spindle assembly checkpoint most likely through Aurora B activation.


Aurora Kinase B/metabolism , Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Survivin/metabolism , Threonine/chemistry , Animals , Cell Cycle , Cell Division , Cell Line, Tumor , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Insecta , Mitosis , Mutation , Phosphorylation , Rats , Spindle Apparatus/metabolism
16.
Cancer Sci ; 109(9): 2632-2640, 2018 Sep.
Article En | MEDLINE | ID: mdl-29949679

Tetraploidy, a condition in which a cell has four homologous sets of chromosomes, is often seen as a natural physiological condition but is also frequently seen in pathophysiological conditions such as cancer. Tetraploidy facilitates chromosomal instability (CIN), which is an elevated level of chromosomal loss and gain that can cause production of a wide variety of aneuploid cells that carry structural and numerical aberrations of chromosomes. The resultant genomic heterogeneity supposedly expedites karyotypic evolution that confers oncogenic potential in spite of the reduced cellular fitness caused by aneuploidy. Recent studies suggest that tetraploidy might also be associated with aging; mice with mutations in an intermediate filament protein have revealed that these tetraploidy-prone mice exhibit tissue disorders associated with aging. Cellular senescence and its accompanying senescence-associated secretory phenotype have now emerged as critical factors that link tetraploidy and tetraploidy-induced CIN with cancer, and possibly with aging. Here, we review recent findings about how tetraploidy is related to cancer and possibly to aging, and discuss underlying mechanisms of the relationship, as well as how we can exploit the properties of cells exhibiting tetraploidy-induced CIN to control these pathological conditions.


Aging/genetics , Cellular Senescence/genetics , Chromosomal Instability/genetics , Neoplasms/genetics , Tetraploidy , Animals , Humans , Mice
17.
Sci Rep ; 8(1): 7003, 2018 Apr 30.
Article En | MEDLINE | ID: mdl-29712957

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

18.
Biomed Res ; 39(2): 75-85, 2018.
Article En | MEDLINE | ID: mdl-29669986

Separation of sister chromatids is a drastic and irreversible step in the cell cycle. The key biochemistry behind this event is the proteolysis mediated by the ubiquitin ligase called the anaphase promoting complex, or APC/C. Securin and cyclin B1 are the two established substrates for APC/C whose degradation releases separase and inactivates cyclin B1-dependent kinase 1 (cdk1), respectively, at the metaphase-to-anaphase transition. In this study, we have combined biochemical quantifications with mathematical simulations to characterize the kinetic regulation of securin and cyclin B1, in the cytoplasmic and chromosomal compartments, and found that they are differentially distributed and degraded with different rates. Modeling their interaction with separase predicted that activation timing of separase well coincides with the decline of securin-separase concentration in the cytoplasm. Notably, it also coincides with the peak of cyclin B1-separase level on chromosomes, which appeared crucial to coordinate the timing for separase activation and cdk1 inhibition. We have also conducted phosphoproteomic analysis and identified Ki67 as a chromosomal cdk1 substrate whose dephosphorylation is facilitated by cyclin B1-separase interaction in anaphase.


Anaphase/physiology , Cyclin B1/metabolism , Metaphase/physiology , Securin/metabolism , Algorithms , Cytokinesis , HeLa Cells , Humans , Mitosis/physiology , Models, Biological , Phosphorylation , Protein Transport , Separase/metabolism
19.
Sci Rep ; 8(1): 3888, 2018 03 01.
Article En | MEDLINE | ID: mdl-29497093

Faithful chromosome segregation is ensured by the establishment of bi-orientation; the attachment of sister kinetochores to the end of microtubules extending from opposite spindle poles. In addition, kinetochores can also attach to lateral surfaces of microtubules; called lateral attachment, which plays a role in chromosome capture and transport. However, molecular basis and biological significance of lateral attachment are not fully understood. We have addressed these questions by focusing on the prometaphase rosette, a typical chromosome configuration in early prometaphase. We found that kinetochores form uniform lateral attachments in the prometaphase rosette. Many transient kinetochore components are maximally enriched, in an Aurora B activity-dependent manner, when the prometaphase rosette is formed. We revealed that rosette formation is driven by rapid poleward motion of dynein, but can occur even in its absence, through slow kinetochore movements caused by microtubule depolymerization that is supposedly dependent on kinetochore tethering at microtubule ends by CENP-E. We also found that chromosome connection to microtubules is extensively lost when lateral attachment is perturbed in cells defective in end-on attachment. Our findings demonstrate that lateral attachment is an important intermediate in bi-orientation establishment and chromosome alignment, playing a crucial role in incorporating chromosomes into the nascent spindle.


Chromosome Segregation/physiology , Kinetochores/physiology , Microtubules/physiology , Dyneins/metabolism , HeLa Cells , Humans , Prometaphase/physiology , Rosette Formation/methods , Spindle Apparatus/metabolism , Spindle Apparatus/physiology
20.
Biochem J ; 475(5): 981-1002, 2018 03 15.
Article En | MEDLINE | ID: mdl-29459360

The transcription repressor BACH1 performs mutually independent dual roles in transcription regulation and chromosome alignment during mitosis by supporting polar ejection force of mitotic spindle. We now found that the mitotic spindles became oblique relative to the adhesion surface following endogenous BACH1 depletion in HeLa cells. This spindle orientation rearrangement was rescued by re-expression of BACH1 depending on its interactions with HMMR and CRM1, both of which are required for the positioning of mitotic spindle, but independently of its DNA-binding activity. A mass spectrometry analysis of BACH1 complexes in interphase and M phase revealed that BACH1 lost during mitosis interactions with proteins involved in chromatin and gene expression but retained interactions with HMMR and its known partners including CHICA. By analyzing BACH1 modification using stable isotope labeling with amino acids in cell culture, mitosis-specific phosphorylations of BACH1 were observed, and mutations of these residues abolished the activity of BACH1 to restore mitotic spindle orientation in knockdown cells and to interact with HMMR. Detailed histological analysis of Bach1-deficient mice revealed lengthening of the epithelial fold structures of the intestine. These observations suggest that BACH1 performs stabilization of mitotic spindle orientation together with HMMR and CRM1 in mitosis, and that the cell cycle-specific phosphorylation switches the transcriptional and mitotic functions of BACH1.


Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/physiology , Chromosomes/metabolism , Extracellular Matrix Proteins/metabolism , Hyaluronan Receptors/metabolism , Protein Kinases/metabolism , Animals , HeLa Cells , Humans , Karyopherins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitosis/genetics , Phosphorylation , Protein Binding , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/physiology , Exportin 1 Protein
...