Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958584

ABSTRACT

LncRNAs are emerging as important regulators of gene expression by controlling transcription in the nucleus and by modulating mRNA translation in the cytoplasm. In this study, we reveal a novel function of lncRNA SNHG15 in mediating breast cancer cell invasion through regulating the local translation of CDH2 mRNA. We show that SNHG15 preferentially localizes at the cellular protrusions or cell leading edge and that this localization is directed by IMP1, a multifunctional protein involved in many aspects of RNA regulation. We demonstrate that SNHG15 also forms a complex with nucleolin, allowing nucleolin to be co-transported with SNHG15 to the cell protrusions, where the accumulated nucleolin is able to bind to CDH2 mRNA. Interaction with nucleolin stabilizes local CDH2 mRNA and regulates its translation, thus promoting cell invasive potential. Our findings reveal an underlying mechanism by which lncRNA could serve as a carrier to transport a protein regulator into a specific cell compartment to enhance target mRNA expression.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Cell Line, Tumor , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Proliferation/genetics , Cell Surface Extensions/metabolism , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic , Nucleolin
2.
Front Genet ; 12: 790426, 2021.
Article in English | MEDLINE | ID: mdl-34956331

ABSTRACT

Atrial septal defects (ASDs) are the most common types of cardiac septal defects in congenital heart defects. In addition to traditional therapy, interventional closure has become the main treatment method. However, the molecular events and mechanisms underlying the repair progress by occlusion device remain unknown. In this study, we aimed to characterize differentially expressed genes (DEGs) in the blood of patients treated with occlusion devices (metal or poly-L-lactic acid devices) using RNA-sequencing, and further validated them by qRT-PCR analysis to finally determine the expression of key mediating genes after closure of ASD treatment. The result showed that total 1,045 genes and 1,523 genes were expressed differently with significance in metal and poly-L-lactic acid devices treatment, respectively. The 115 overlap genes from the different sub-analyses are illustrated. The similarities and differences in gene expression reflect that the body response process involved after interventional therapy for ASDs has both different parts that do not overlap and the same part that crosses. The same portion of body response regulatory genes are key regulatory genes expressed in the blood of patients with ASDs treated with closure devices. The gene ontology enrichment analysis showed that biological processes affected in metal device therapy are immune response with CXCR4 genes and poly-L-lactic acid device treatment, and the key pathways are nuclear-transcribed mRNA catabolic process and proteins targeting endoplasmic reticulum process with ribosomal proteins (such as RPS26). We confirmed that CXCR4, TOB1, and DDIT4 gene expression are significantly downregulated toward the pre-therapy level after the post-treatment in both therapy groups by qRT-PCR. Our study suggests that the potential role of CXCR4, DDIT4, and TOB1 may be key regulatory genes in the process of endothelialization in the repair progress of ASDs, providing molecular insights into this progress for future studies.

3.
Cell Death Dis ; 12(11): 1051, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741014

ABSTRACT

PD-L1(CD274) is a well-known immunosuppressive molecule, which confers immunoescape features to cancer cells and has become one of the major targets in cancer immunotherapies. Understanding the regulatory mechanisms that control PD-L1 protein expression is important for guiding immune checkpoint blockade therapy. Here, we showed that ubiquitin specific peptidase 5 (USP5) was a novel PD-L1 deubiquitinase in non-small cell lung cancer (NSCLC) cells. USP5 directly interacted with PD-L1 and deubiquitinated PD-L1, therefore enhances PD-L1 protein stability. Meanwhile, USP5 protein levels were highly elevated and positively correlated to PD-L1 levels in NSCLC tissues, and were closely correlated with poor prognosis of these patients. In addition, knockdown of USP5 retarded tumor growth in the Lewis lung carcinoma mouse model. Thus, we identified that USP5 was a new regulator of PD-L1 and targeting USP5 is a promising strategy for cancer therapy.


Subject(s)
B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Disease Progression , Endopeptidases/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Amino Acid Sequence , Animals , B7-H1 Antigen/chemistry , Cell Proliferation , Down-Regulation , Endopeptidases/chemistry , Female , Gene Dosage , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Prognosis , Protein Binding , Protein Stability , Ubiquitin-Specific Proteases/metabolism , Ubiquitination , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL