Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters










Publication year range
1.
Environ Microbiol Rep ; 16(4): e13310, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38982629

ABSTRACT

Coral microbiomes differ in the mucus, soft tissue and skeleton of a coral colony, but whether variations exist in different tissues of a single polyp is unknown. In the stony coral, Fimbriaphyllia ancora, we identified 8,994 amplicon sequencing variants (ASVs) in functionally differentiated polyp tissues, i.e., tentacles, body wall, mouth and pharynx, mesenterial filaments, and gonads (testes and ovaries), with a large proportion of ASVs specific to individual tissues. However, shared ASVs comprised the majority of microbiomes from all tissues in terms of relative abundance. No tissue-specific ASVs were found, except in testes, for which there were only two samples. At the generic level, Endozoicomonas was significantly less abundant in the body wall, where calicoblastic cells reside. On the other hand, several bacterial taxa presented significantly higher abundances in the mouth. Interestingly, although without statistical confirmation, gonadal tissues showed lower ASV richness and relatively high abundances of Endozoicomonas (in ovaries) and Pseudomonas (in testes). These findings provide evidence for microbiome heterogeneity between tissues within coral polyps, suggesting a promising field for future studies of functional interactions between corals and their bacterial symbionts.


Subject(s)
Anthozoa , Bacteria , Microbiota , Anthozoa/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Phylogeny , Symbiosis , RNA, Ribosomal, 16S/genetics
2.
Commun Biol ; 7(1): 749, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902371

ABSTRACT

Dietary emulsifiers are linked to various diseases. The recent discovery of the role of gut microbiota-host interactions on health and disease warrants the safety reassessment of dietary emulsifiers through the lens of gut microbiota. Lecithin, sucrose fatty acid esters, carboxymethylcellulose (CMC), and mono- and diglycerides (MDG) emulsifiers are common dietary emulsifiers with high exposure levels in the population. This study demonstrates that sucrose fatty acid esters and carboxymethylcellulose induce hyperglycemia and hyperinsulinemia in a mouse model. Lecithin, sucrose fatty acid esters, and CMC disrupt glucose homeostasis in the in vitro insulin-resistance model. MDG impairs circulating lipid and glucose metabolism. All emulsifiers change the intestinal microbiota diversity and induce gut microbiota dysbiosis. Lecithin, sucrose fatty acid esters, and CMC do not impact mucus-bacterial interactions, whereas MDG tends to cause bacterial encroachment into the inner mucus layer and enhance inflammation potential by raising circulating lipopolysaccharide. Our findings demonstrate the safety concerns associated with using dietary emulsifiers, suggesting that they could lead to metabolic syndromes.


Subject(s)
Dysbiosis , Emulsifying Agents , Gastrointestinal Microbiome , Metabolic Diseases , Animals , Dysbiosis/chemically induced , Dysbiosis/microbiology , Gastrointestinal Microbiome/drug effects , Mice , Male , Metabolic Diseases/chemically induced , Metabolic Diseases/microbiology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Mice, Inbred C57BL , Carboxymethylcellulose Sodium , Sucrose/adverse effects , Sucrose/administration & dosage , Sucrose/metabolism , Insulin Resistance , Lecithins
3.
Curr Biol ; 34(14): 3226-3232.e5, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38942019

ABSTRACT

A dynamic mucous layer containing numerous micro-organisms covers the surface of corals and has multiple functions including both removal of sediment and "food gathering."1 It is likely to also act as the primary barrier to infection; various proteins and compounds with antimicrobial activity have been identified in coral mucus, though these are thought to be largely or exclusively of microbial origin. As in Hydra,2 anti-microbial peptides (AMPs) are likely to play major roles in regulating the microbiomes of corals.3,4 Some eukaryotes employ a complementary but less obvious approach to manipulate their associated microbiome by interfering with quorum signaling, effectively preventing bacteria from coordinating gene expression across a population. Our investigation of immunity in the reef-building coral Acropora millepora,5 however, led to the discovery of a coral gene referred to here as AmNtNH1 that can inactivate a range of acyl homoserine lactones (AHLs), common bacterial quorum signaling molecules, and is induced on immune challenge of adult corals and expressed during the larval settlement process. Closely related proteins are widely distributed within the Scleractinia (hard corals) and some other cnidarians, with multiple paralogs in Acropora, but their closest relatives are bacterial, implying that these are products of one or more lateral gene transfer events post-dating the cnidarian-bilaterian divergence. The deployment by corals of genes used by bacteria to compete with other bacteria reflects a mechanism of microbiome manipulation previously unknown in Metazoa but that may apply more generally.


Subject(s)
Anthozoa , Microbiota , Quorum Sensing , Animals , Anthozoa/microbiology , Anthozoa/immunology , Anthozoa/physiology , Cnidaria/physiology , Cnidaria/genetics , Coral Reefs , Acyl-Butyrolactones/metabolism
4.
ISME Commun ; 4(1): ycae001, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38371393

ABSTRACT

Bacteria contribute to many physiological functions of coral holobionts, including responses to bleaching. The bacterial genus, Endozoicomonas, dominates the microbial flora of many coral species and its abundance appears to be correlated with coral bleaching. However, evidences for decoupling of bleaching and Endozoicomonas abundance changes have also been reported. In 2020, a severe bleaching event was recorded at reefs in Taiwan, providing a unique opportunity to re-examine bleaching-Endozoicomonas association using multiple stony corals in natural environments. In this study, we monitored tissue color and microbiome changes in three coral species (Montipora sp., Porites sp., and Stylophora pistillata) in Kenting National Park, following the bleaching event. All tagged Montipora sp. and Porites sp. recovered from bleaching within 1 year, while high mortality occurred in S. pistillata. Microbiome analysis found no correlation of Endozoicomonas relative abundance and bleaching severity during the sampling period, but found a stronger correlation when the month in which bleaching occurred was excluded. Moreover, Endozoicomonas abundance increased during recovery months in Montipora sp. and Porites sp., whereas in S. pistillata it was nearly depleted. These results suggest that Endozoicomonas abundance may represent a gauge of coral health and reflect recovery of some corals from stress. Interestingly, even though different Endozoicomonas strains predominated in the three corals, these Endozoicomonas strains were also shared among coral taxa. Meanwhile, several Endozoicomonas strains showed secondary emergence during coral recovery, suggesting possible symbiont switching in Endozoicomonas. These findings indicate that it may be possible to introduce Endozoicomonas to non-native coral hosts as a coral probiotic.

5.
Sci Adv ; 9(47): eadk1910, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37992165

ABSTRACT

Endozoicomonas are often predominant bacteria and prominently important in coral health. Their role in dimethylsulfoniopropionate (DMSP) degradation has been a subject of discussion for over a decade. A previous study found that Endozoicomonas degraded DMSP through the dddD pathway. This process releases dimethyl sulfide, which is vital for corals coping with thermal stress. However, little is known about the related gene regulation and metabolic abilities of DMSP metabolism in Endozoicomonadaceae. In this study, we isolated a novel Endozoicomonas DMSP degrader and observed a distinct DMSP metabolic trend in two phylogenetically close dddD-harboring Endozoicomonas species, confirmed genetically by comparative transcriptomic profiling and visualization of the change of DMSP stable isotopes in bacterial cells using nanoscale secondary ion spectrometry. Furthermore, we found that DMSP cleavage enzymes are ubiquitous in coral Endozoicomonas with a preference for having DddD lyase. We speculate that harboring DMSP degrading genes enables Endozoicomonas to successfully colonize various coral species across the globe.


Subject(s)
Anthozoa , Sulfonium Compounds , Animals , Anthozoa/metabolism , Bacteria/metabolism , Sulfonium Compounds/metabolism
6.
Microbiol Spectr ; 11(4): e0025723, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37378544

ABSTRACT

Polyp bail-out constitutes both a stress response and an asexual reproductive strategy that potentially facilitates dispersal of some scleractinian corals, including several dominant reef-building taxa in the family Pocilloporidae. Recent studies have proposed that microorganisms may be involved in onset and progression of polyp bail-out. However, changes in the coral microbiome during polyp bail-out have not been investigated. In this study, we induced polyp bail-out in Pocillopora corals using hypersaline and hyperthermal methods. Bacterial community dynamics during bail-out induction were examined using the V5-V6 region of the 16S-rRNA gene. From 70 16S-rRNA gene libraries constructed from coral tissues, 1,980 OTUs were identified. Gammaproteobacteria and Alphaproteobacteria consistently constituted the dominant bacterial taxa in all coral tissue samples. Onset of polyp bail-out was characterized by increased relative abundance of Alphaproteobacteria and decreased abundance of Gammaproteobacteria in both induction experiments, with the shift being more prominent in response to elevated temperature than to elevated salinity. Four OTUs, affiliated with Thalassospira, Marisediminitalea, Rhodobacteraceae, and Myxococcales, showed concurrent abundance increases at the onset of polyp bail-out in both experiments, suggesting potential microbial causes of this coral stress response. IMPORTANCE Polyp bail-out represents both a stress response and an asexual reproductive strategy with significant implications for reshaping tropical coral reefs in response to global climate change. Although earlier studies have suggested that coral-associated microbiomes likely contribute to initiation of polyp bail-out in scleractinian corals, there have been no studies of coral microbiome shifts during polyp bail-out. In this study, we present the first investigation of changes in bacterial symbionts during two experiments in which polyp bail-out was induced by different environmental stressors. These results provide a background of coral microbiome dynamics during polyp bail-out development. Increases in abundance of Thalassospira, Marisediminitalea, Rhodobacteraceae, and Myxococcales that occurred in both experiments suggest that these bacteria are potential microbial causes of polyp bail-out, shedding light on the proximal triggering mechanism of this coral stress response.


Subject(s)
Anthozoa , Gammaproteobacteria , Microbiota , Myxococcales , Rhodobacteraceae , Animals , Anthozoa/genetics , Anthozoa/microbiology , Coral Reefs , Microbiota/genetics , Gammaproteobacteria/genetics , Rhodobacteraceae/genetics , Myxococcales/genetics , RNA, Ribosomal, 16S/genetics
7.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108688

ABSTRACT

White spot syndrome virus (WSSV) is a very large dsDNA virus. The accepted shape of the WSSV virion has been as ellipsoidal, with a tail-like extension. However, due to the scarcity of reliable references, the pathogenesis and morphogenesis of WSSV are not well understood. Here, we used transmission electron microscopy (TEM) and cryogenic electron microscopy (Cryo-EM) to address some knowledge gaps. We concluded that mature WSSV virions with a stout oval-like shape do not have tail-like extensions. Furthermore, there were two distinct ends in WSSV nucleocapsids: a portal cap and a closed base. A C14 symmetric structure of the WSSV nucleocapsid was also proposed, according to our Cryo-EM map. Immunoelectron microscopy (IEM) revealed that VP664 proteins, the main components of the 14 assembly units, form a ring-like architecture. Moreover, WSSV nucleocapsids were also observed to undergo unique helical dissociation. Based on these new results, we propose a novel morphogenetic pathway of WSSV.


Subject(s)
Penaeidae , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/genetics , Nucleocapsid/chemistry , Nucleocapsid/metabolism , Virion/metabolism , Microscopy, Electron , Microscopy, Immunoelectron
8.
NPJ Biofilms Microbiomes ; 9(1): 15, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37015942

ABSTRACT

Black band disease (BBD) in corals is characterized by a distinctive, band-like microbial mat, which spreads across the tissues and often kills infected colonies. The microbial mat is dominated by cyanobacteria but also commonly contains sulfide-oxidizing bacteria (SOB), sulfate-reducing bacteria (SRB), and other microbes. The migration rate in BBD varies across different environmental conditions, including temperature, light, and pH. However, whether variations in the migration rates reflect differences in the microbial consortium within the BBD mat remains unknown. Here, we show that the micro-scale surface structure, bacterial composition, and spatial distribution differed across BBD lesions with different migration rates. The migration rate was positively correlated with the relative abundance of potential SOBs belonging to Arcobacteraceae localized in the middle layer within the mat and negatively correlated with the relative abundance of other potential SOBs belonging to Rhodobacteraceae. Our study highlights the microbial composition in BBD as an important determinant of virulence.


Subject(s)
Anthozoa , Cyanobacteria , Animals , Anthozoa/microbiology , Virulence , Sulfides
9.
Proc Biol Sci ; 290(1990): 20221973, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36629118

ABSTRACT

The shallow-water hydrothermal vent system of Kueishan Island has been described as one of the world's most acidic and sulfide-rich marine habitats. The only recorded metazoan species living in the direct vicinity of the vents is Xenograpsus testudinatus, a brachyuran crab endemic to marine sulfide-rich vent systems. Despite the toxicity of hydrogen sulfide, X. testudinatus occupies an ecological niche in a sulfide-rich habitat, with the underlying detoxification mechanism remaining unknown. Using laboratory and field-based experiments, we characterized the gills of X. testudinatus that are the major site of sulfide detoxification. Here sulfide is oxidized to thiosulfate or bound to hypotaurine to generate the less toxic thiotaurine. Biochemical and molecular analyses demonstrated that the accumulation of thiosulfate and hypotaurine is mediated by the sodium-independent sulfate anion transporter (SLC26A11) and taurine transporter (Taut), which are expressed in gill epithelia. Histological and metagenomic analyses of gill tissues demonstrated a distinct bacterial signature dominated by Epsilonproteobacteria. Our results suggest that thiotaurine synthesized in gills is used by sulfide-oxidizing endo-symbiotic bacteria, creating an effective sulfide-buffering system. This work identified physiological mechanisms involving host-microbe interactions that support life of a metazoan in one of the most extreme environments on our planet.


Subject(s)
Brachyura , Hydrothermal Vents , Animals , Thiosulfates , Sulfides/toxicity , Brachyura/physiology , Bacteria
10.
Microbiol Resour Announc ; 12(1): e0087722, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36541816

ABSTRACT

Endozoicomonas euniceicola EF212T and Endozoicomonas gorgoniicola PS125T were isolated from soft corals (Eunicea fusca and Plexaura sp., respectively) and sequenced using a PacBio Sequel IIe sequencer. This is the first report of the genome sequences of culturable octocoral-isolated Endozoicomonas strains.

11.
BMC Biol ; 20(1): 236, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266645

ABSTRACT

BACKGROUND: The Fusarium solani species complex (FSSC) comprises fungal pathogens responsible for mortality in a diverse range of animals and plants, but their genome diversity and transcriptome responses in animal pathogenicity remain to be elucidated. We sequenced, assembled and annotated six chromosome-level FSSC clade 3 genomes of aquatic animal and plant host origins. We established a pathosystem and investigated the expression data of F. falciforme and F. keratoplasticum in Chinese softshell turtle (Pelodiscus sinensis) host. RESULTS: Comparative analyses between the FSSC genomes revealed a spectrum of conservation patterns in chromosomes categorised into three compartments: core, fast-core (FC), and lineage-specific (LS). LS chromosomes contribute to variations in genomes size, with up to 42.2% of variations between F. vanettenii strains. Each chromosome compartment varied in structural architectures, with FC and LS chromosomes contain higher proportions of repetitive elements with genes enriched in functions related to pathogenicity and niche expansion. We identified differences in both selection in the coding sequences and DNA methylation levels between genome features and chromosome compartments which suggest a multi-speed evolution that can be traced back to the last common ancestor of Fusarium. We further demonstrated that F. falciforme and F. keratoplasticum are opportunistic pathogens by inoculating P. sinensis eggs and identified differentially expressed genes also associated with plant pathogenicity. These included the most upregulated genes encoding the CFEM (Common in Fungal Extracellular Membrane) domain. CONCLUSIONS: The high-quality genome assemblies provided new insights into the evolution of FSSC chromosomes, which also serve as a resource for studies of fungal genome evolution and pathogenesis. This study also establishes an animal model for fungal pathogens of trans-kingdom hosts.


Subject(s)
Fusarium , Animals , Fusarium/genetics , Transcriptome , Plant Diseases/genetics , Plant Diseases/microbiology , Phylogeny , Genomics , Plants/genetics
12.
Microbiol Spectr ; 10(5): e0180322, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36098526

ABSTRACT

The Taitung region is one of Taiwan's main sites for ginger agriculture. Due to issues with disease and nutrients, farmers cannot use continuous cropping techniques on ginger, meaning that the ginger industry is constantly searching for new land. Continuous cropping increases the risk of infection by Pythium myriotylum and Ralstonia solanacearum, which cause soft rot disease and bacterial wilt, respectively. In addition, fertilizer additives, which are commonly used to increase trace elements in the soil, cannot restore the soil when it is undergoing continuous cropping on ginger, even when there has been no observable decrease in trace elements in the soil. Recent studies about soil microbiome manipulation and the application of microorganisms have shown that plant-associated microbes have the ability to improve plant growth and facilitate sustainable agriculture, but studies of this kind still need to be carried out on ginger cultivation. Therefore, in this study, we used the bacterial 16S V3-V4 hypervariable region of the 16S rRNA region to investigate microbe compositions in ginger soil to identify the difference between ginger soil with and without disease. Later, to investigate the influence of the well-known biocontrol agent B. velezensis and the fungicide Etridiazole on soil microbes and ginger productivity, we designed an experiment that collected the soil samples according to the different periods of ginger cultivation to examine the microbial community dynamics in the rhizome and bulk soil. We demonstrated that B. velezensis is beneficial to ginger reproduction. In accordance with our results, we suggest that B. velezensis may influence the plant's growth by adjusting its soil microbial composition. Etridiazole, on the other hand, may have some side effects on the ginger or beneficial bacteria in the soils that inhibit ginger reproduction. IMPORTANCE Pythium myriotylum and Ralstonia solanacearum cause soft rot disease and bacterial wilt, respectively. In this study, we used the bacterial 16S V3-V4 hypervariable region of the 16S rRNA region to investigate microbe compositions in healthy and diseased ginger soil and find out the influence of the well-known biocontrol agent B. velezensis and the fungicide Etridiazole on soil microbes and ginger productivity. These results demonstrated that B. velezensis benefits ginger reproduction and may influence the soil bacterial composition, while Etridiazole may have some side effects on the ginger or beneficial bacteria in the soils. The interactions among ginger, biocontrol agents, and fungicides need to be further investigated.


Subject(s)
Fungicides, Industrial , Pythium , Trace Elements , Zingiber officinale , Zingiber officinale/genetics , Zingiber officinale/microbiology , RNA, Ribosomal, 16S/genetics , Soil , Fertilizers , Plant Diseases/prevention & control , Plant Diseases/microbiology , Pythium/genetics , Bacteria/genetics , Soil Microbiology
13.
Sci Adv ; 8(27): eabo2431, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35857470

ABSTRACT

Bacteria commonly form aggregates in a range of coral species [termed coral-associated microbial aggregates (CAMAs)], although these structures remain poorly characterized despite extensive efforts studying the coral microbiome. Here, we comprehensively characterize CAMAs associated with Stylophora pistillata and quantify their cell abundance. Our analysis reveals that multiple Endozoicomonas phylotypes coexist inside a single CAMA. Nanoscale secondary ion mass spectrometry imaging revealed that the Endozoicomonas cells were enriched with phosphorus, with the elemental compositions of CAMAs different from coral tissues and endosymbiotic Symbiodiniaceae, highlighting a role in sequestering and cycling phosphate between coral holobiont partners. Consensus metagenome-assembled genomes of the two dominant Endozoicomonas phylotypes confirmed their metabolic potential for polyphosphate accumulation along with genomic signatures including type VI secretion systems allowing host association. Our findings provide unprecedented insights into Endozoicomonas-dominated CAMAs and the first direct physiological and genomic linked evidence of their biological role in the coral holobiont.

14.
mSystems ; 7(4): e0035922, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35703535

ABSTRACT

Bacteria in the coral microbiome play a crucial role in determining coral health and fitness, and the coral host often restructures its microbiome composition in response to external factors. An important but often neglected factor determining this microbiome restructuring is the ability of microbiome members to respond to changes in the environment. To address this issue, we examined how the microbiome structure of Acropora muricata corals changed over 9 months following a reciprocal transplant experiment. Using a combination of metabarcoding, genomics, and comparative genomics approaches, we found that coral colonies separated by a small distance harbored different dominant Endozoicomonas-related phylotypes belonging to two different species, including a novel species, "Candidatus Endozoicomonas penghunesis" 4G, whose chromosome-level (complete) genome was also sequenced in this study. Furthermore, the two dominant Endozoicomonas species had different potentials to scavenge reactive oxygen species, suggesting potential differences in responding to the environment. Differential capabilities of dominant members of the microbiome to respond to environmental change can (i) provide distinct advantages or disadvantages to coral hosts when subjected to changing environmental conditions and (ii) have positive or negative implications for future reefs. IMPORTANCE The coral microbiome has been known to play a crucial role in host health. In recent years, we have known that the coral microbiome changes in response to external stressors and that coral hosts structure their microbiome in a host-specific manner. However, an important internal factor, the ability of microbiome members to respond to change, has been often neglected. In this study, we combine metabarcoding, culturing, and genomics to delineate the differential ability of two dominant Endozoicomonas species, including a novel "Ca. Endozoicomonas penghunesis" 4G, to respond to change in the environment following a reciprocal transplant experiment.


Subject(s)
Anthozoa , Gammaproteobacteria , Microbiota , Animals , Anthozoa/genetics , Bacteria/genetics , Microbiota/genetics , Genomics , Gammaproteobacteria/genetics
15.
PeerJ ; 10: e13451, 2022.
Article in English | MEDLINE | ID: mdl-35669953

ABSTRACT

The first occurrence of the cyanobacteriosponge Terpios hoshinota was reported from coral reefs in Guam in 1973, but was only formally described in 1993. Since then, the invasive behavior of this encrusting, coral-killing sponge has been observed in many coral reefs in the West Pacific. From 2015, its occurrence has expanded westward to the Indian Ocean. Although many studies have investigated the morphology, ecology, and symbiotic cyanobacteria of this sponge, little is known of its population genetics and demography. In this study, a mitochondrial cytochrome oxidase I (COI) fragment and nuclear ribosomal internal transcribed spacer 2 (ITS2) were sequenced to reveal the genetic variation of T. hoshinota collected from 11 marine ecoregions throughout the Indo-West Pacific. Both of the statistical parsimony networks based on the COI and nuclear ITS2 were dominated by a common haplotype. Pairwise F ST and Isolation-by-distance by Mantel test of ITS2 showed moderate gene flow existed among most populations in the marine ecoregions of West Pacific, Coral Triangle, and Eastern Indian Ocean, but with a restricted gene flow between these regions and Maldives in the Central Indian Ocean. Demographic analyses of most T. hoshinota populations were consistent with the mutation-drift equilibrium, except for the Sulawesi Sea and Maldives, which showed bottlenecks following recent expansion. Our results suggest that while long-range dispersal might explain the capability of T. hoshinota to spread in the IWP, stable population demography might account for the long-term persistence of T. hoshinota outbreaks on local reefs.


Subject(s)
Anthozoa , Porifera , Animals , Anthozoa/genetics , Genetics, Population , Coral Reefs , Population Dynamics
16.
mBio ; 13(3): e0125522, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35608299

ABSTRACT

Methane-oxidizing bacteria (methanotrophs) play an ecological role in methane and nitrogen fluxes because they are capable of nitrogen fixation and methane oxidation, as indicated by genomic and cultivation-dependent studies. However, the chemical relationships between methanotrophy and diazotrophy and aerobic and anaerobic reactions, respectively, in methanotrophs remain unclear. No study has demonstrated the cooccurrence of both bioactivities in a single methanotroph bacterium in its natural environment. Here, we demonstrate that both bioactivities in type II methanotrophs occur at the single-cell level in the root tissues of paddy rice (Oryza sativa L. cv. Nipponbare). We first verified that difluoromethane, an inhibitor of methane monooxygenase, affected methane oxidation in rice roots. The results indicated that methane assimilation in the roots mostly occurred due to oxygen-dependent processes. Moreover, the results indicated that methane oxidation-dependent and methane oxidation-independent nitrogen fixation concurrently occurred in bulk root tissues. Subsequently, we performed fluorescence in situ hybridization and NanoSIMS analyses, which revealed that single cells of type II methanotrophs (involving six amplicon sequence variants) in paddy rice roots simultaneously and logarithmically fixed stable isotope gases 15N2 and 13CH4 during incubation periods of 0, 23, and 42 h, providing in vivo functional evidence of nitrogen fixation in methanotrophic cells. Furthermore, 15N enrichment in type II methanotrophs at 42 h varied among cells with an increase in 13C accumulation, suggesting that either the release of fixed nitrogen into root systems or methanotroph metabolic specialization is dependent on different microenvironmental niches in the root. IMPORTANCE Atmospheric methane concentrations have been continually increasing, causing methane to become a considerable environmental concern. Methanotrophy may be the key to regulating methane fluxes. Although research suggests that type II methanotrophs are involved in methane oxidation aerobically and nitrogen fixation anaerobically, direct evidence of simultaneous aerobic and anaerobic bioreactions of methanotrophs in situ is still lacking. In this study, a single-cell isotope analysis was performed to demonstrate these in vivo parallel functions of type II methanotrophs in the root tissues of paddy rice (Oryza sativa L. cv. Nipponbare). The results of this study indicated that methanotrophs might provide fixed nitrogen to root systems or depend on cells present in the spatially localized niche of the root tissue. Furthermore, our results suggested that single type II methanotrophic cells performed simultaneous methane oxidation and nitrogen fixation in vivo. Under natural conditions, however, nitrogen accumulation varied at the single-cell level.


Subject(s)
Oryza , In Situ Hybridization, Fluorescence , Isotopes , Methane/metabolism , Nitrogen/metabolism , Oryza/microbiology , Oxidation-Reduction , Soil Microbiology
17.
Biodegradation ; 33(4): 373-388, 2022 08.
Article in English | MEDLINE | ID: mdl-35610494

ABSTRACT

One of the most important advancements in harnessing the biological nitrification in the field is enrichment solution of nitrifying microbial consortia. In the current study, we developed an improved multi-step enrichment to amplify a targeted microbial consortium from a sediment sample collected in tropical mangrove, Vietnam. The results showed that it took 122 culturing days with five unique continuous enrichment steps, the microbial consortium consumed total 5665 mgN L-1. Relative substrate removal rate increased rapidly from 0.114 mgN L-1 h-1 at the end of the first-step enrichment up to 3.58 mgN L-1 h-1 at the end of the fifth-step enrichment. High-throughput sequencing revealed that Nitrospirae, Proteobacteria and Bacteroidetes were the dominant taxa at the phylum level while Nitrospira, Marinobacter, Denitromonas and Nitrosomonas were the dominant taxa at the genus level in the enriched consortia. A pilot-scale experiment for shrimp cultivation of L. vannamei in 84 day-period proved the efficiency of Total ammonium nitrogen and nitrite removal in the consortium-activated treatment was much higher than the control.


Subject(s)
Ammonia , Nitrites , Aquaculture , Bacteria/genetics , Biodegradation, Environmental , Bioreactors/microbiology , Nitrification , Oxidation-Reduction
18.
PeerJ ; 10: e12746, 2022.
Article in English | MEDLINE | ID: mdl-35070504

ABSTRACT

Global warming threatens reef-building corals with large-scale bleaching events; therefore, it is important to discover potential adaptive capabilities for increasing their temperature resistance before it is too late. This study presents two coral species (Platygyra verweyi and Isopora palifera) surviving on a reef having regular hot water influxes via a nearby nuclear power plant that exhibited completely different bleaching susceptibilities to thermal stress, even though both species shared several so-called "winner" characteristics (e.g., containing Durusdinium trenchii, thick tissue, etc.). During acute heating treatment, algal density did not decline in P. verweyi corals within three days of being directly transferred from 25 to 31 °C; however, the same treatment caused I. palifera to lose < 70% of its algal symbionts within 24 h. The most distinctive feature between the two coral species was an overwhelmingly higher constitutive superoxide dismutase (ca. 10-fold) and catalase (ca. 3-fold) in P. verweyi over I. palifera. Moreover, P. verweyi also contained significantly higher saturated and lower mono-unsaturated fatty acids, especially a long-chain saturated fatty acid (C22:0), than I. palifera, and was consistently associated with the symbiotic bacteria Endozoicomonas, which was not found in I. palifera. However, antibiotic treatment and inoculation tests did not support Endozoicomonas having a direct contribution to thermal resistance. This study highlights that, besides its association with a thermally tolerable algal symbiont, a high level of constitutive antioxidant enzymes in the coral host is crucial for coral survivorship in the more fluctuating and higher temperature environments.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Coral Reefs , Acclimatization , Superoxide Dismutase
19.
Environ Microbiol ; 24(3): 1308-1325, 2022 03.
Article in English | MEDLINE | ID: mdl-34708512

ABSTRACT

Terpios hoshinota is an aggressive, space-competing sponge that kills various stony corals. Outbreaks of this species have led to intense damage to coral reefs in many locations. Here, the first large-scale 16S rRNA gene survey across three oceans revealed that bacteria related to the taxa Prochloron, Endozoicomonas, SAR116, Ruegeria, and unclassified Proteobacteria were prevalent in T. hoshinota. A Prochloron-related bacterium was the most dominant and prevalent cyanobacterium in T. hoshinota. The complete genome of this uncultivated cyanobacterium and pigment analysis demonstrated that it has phycobiliproteins and lacks chlorophyll b, which is inconsistent with the definition of Prochloron. Furthermore, the cyanobacterium was phylogenetically distinct from Prochloron, strongly suggesting that it should be a sister taxon to Prochloron. Therefore, we proposed this symbiotic cyanobacterium as a novel species under the new genus Candidatus Paraprochloron terpiosi. Comparative genomic analyses revealed that 'Paraprochloron' and Prochloron exhibit distinct genomic features and DNA replication machinery. We also characterized the metabolic potentials of 'Paraprochloron terpiosi' in carbon and nitrogen cycling and propose a model for interactions between it and T. hoshinota. This study builds a foundation for the study of the T. hoshinota microbiome and paves the way for better understanding of ecosystems involving this coral-killing sponge.


Subject(s)
Anthozoa , Cyanobacteria , Microbiota , Porifera , Animals , Anthozoa/microbiology , Coral Reefs , Cyanobacteria/metabolism , Porifera/genetics , Prevalence , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Symbiosis
20.
Microb Genom ; 7(12)2021 12.
Article in English | MEDLINE | ID: mdl-34860152

ABSTRACT

Meromictic lakes usually harbour certain prevailing anoxygenic phototrophic bacteria in their anoxic zone, such as the purple sulfur bacterium (PSB) Thiocapsa sp. LSW (hereafter LSW) in Lake Shunet, Siberia. PSBs have been suggested to play a vital role in carbon, nitrogen and sulfur cycling at the oxic-anoxic interface of stratified lakes; however, the ecological significance of PSBs in the lake remains poorly understood. In this study, we explored the potential ecological role of LSW using a deep-sequencing analysis of single-cell genomics associated with flow cytometry. An approximately 2.7 Mb draft genome was obtained based on the co-assembly of five single-cell genomes. LSW might grow photolithoautotrophically and could play putative roles not only as a carbon fixer and diazotroph, but also as a sulfate reducer/oxidizer in the lake. This study provides insights into the potential ecological role of Thiocapsa sp. in meromictic lakes.


Subject(s)
Genome, Bacterial , Lakes/microbiology , Single-Cell Analysis/methods , Thiocapsa/classification , Carbon/metabolism , Flow Cytometry , Genome Size , Genomics , High-Throughput Nucleotide Sequencing/methods , Nitrogen/metabolism , Phylogeny , Siberia , Sulfur/metabolism , Thiocapsa/genetics , Thiocapsa/isolation & purification , Thiocapsa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL