Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 757, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095712

ABSTRACT

BACKGROUND: It is known that the neurodevelopmental disorder associated gene, Satb2, plays important roles in determining the upper layer neuron specification. However, it is not well known how this gene regulates other neocortical regions during the development. It is also lack of comprehensive delineation of its spatially regulatory pathways in neocortical development. RESULTS: In this work, we utilized spatial transcriptomics and immuno-staining to systematically investigate the region-specific gene regulation of Satb2 by comparing the Satb2+/+ and Satb2-/- mice at embryonic stages, including the ventricle zone (VZ) or subventricle zone (SVZ), intermediate zone (IZ) and cortical plate (CP) respectively. The staining result reveals that these three regions become moderately or significantly thinner in the Satb2-/- mice. In the cellular level, the cell number increases in the VZ/SVZ, whereas the cell number decreases in the CP. The spatial transcriptomics data show that many important genes and relevant pathways are dysregulated in Satb2-/- mice in a region-specific manner. In the VZ/SVZ, the key genes involved in neural precursor cell proliferation, including the intermediate progenitor marker Tbr2 and the lactate production related gene Ldha, are up-regulated in Satb2-/- mice. In the IZ, the key genes in regulating neuronal differentiation and migration, such as Rnd2, exhibit ectopic expressions in the Satb2-/- mice. In the CP, the lineage-specific genes, Tbr1 and Bcl11b, are abnormally expressed. The neuropeptide related gene Npy is down-regulated in Satb2-/- mice. Finally, we validated the abnormal expressions of key regulators by using immunofluorescence or qPCR. CONCLUSIONS: In summary, our work provides insights on the region-specific genes and pathways which are regulated by Satb2 in neocortical development.


Subject(s)
Gene Expression Regulation, Developmental , Matrix Attachment Region Binding Proteins , Neocortex , Transcription Factors , Transcriptome , Animals , Neocortex/metabolism , Neocortex/growth & development , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Profiling , Mice, Knockout , Repressor Proteins , Tumor Suppressor Proteins
2.
Sci Bull (Beijing) ; 66(22): 2297-2311, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-33585048

ABSTRACT

The pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has caused immense global disruption. With the rapid accumulation of SARS-CoV-2 genome sequences, however, thousands of genomic variants of SARS-CoV-2 are now publicly available. To improve the tracing of the viral genomes' evolution during the development of the pandemic, we analyzed single nucleotide variants (SNVs) in 121,618 high-quality SARS-CoV-2 genomes. We divided these viral genomes into two major lineages (L and S) based on variants at sites 8782 and 28144, and further divided the L lineage into two major sublineages (L1 and L2) using SNVs at sites 3037, 14408, and 23403. Subsequently, we categorized them into 130 sublineages (37 in S, 35 in L1, and 58 in L2) based on marker SNVs at 201 additional genomic sites. This lineage/sublineage designation system has a hierarchical structure and reflects the relatedness among the subclades of the major lineages. We also provide a companion website (www.covid19evolution.net) that allows users to visualize sublineage information and upload their own SARS-CoV-2 genomes for sublineage classification. Finally, we discussed the possible roles of compensatory mutations and natural selection during SARS-CoV-2's evolution. These efforts will improve our understanding of the temporal and spatial dynamics of SARS-CoV-2's genome evolution.

3.
Sci Rep ; 7(1): 14510, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29109449

ABSTRACT

Microenvironment (or niche)-providing chemokines regulate many important biological functions of tissue-specific stem cells. However, to what extent chemokines influence human pluripotent stem cells (hPSCs) is not yet completely understood. In this study, we applied protein array to screen chemokines found within the cytokine pool in the culture supernatant of hPSCs. Our results showed that chemokines were the predominant supernatant components, and came from three sources: hPSCs, feeder cells, and culture media. Chemotaxis analysis of IL-8, SDF-1α, and IP-10 suggested that chemokines function as uniform chemoattractants to mediate in vitro migration of the hPSCs. Chemokines mediate both differentiated and undifferentiated states of hPSCs. However, balanced chemokine signaling tends to enhance their stemness in vitro. These results indicate that chemokines secreted from both stem cells and feeder cells are essential to mobilize hPSCs and maintain their stemness.


Subject(s)
Chemokines/metabolism , Pluripotent Stem Cells/metabolism , Animals , Cell Culture Techniques , Cell Line , Cell Movement/physiology , Culture Media , Female , Humans , Male , Mice, Inbred NOD , Mice, SCID , Pluripotent Stem Cells/cytology , Protein Array Analysis , Proteome , Teratoma/metabolism , Teratoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL