Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 329
Filter
1.
Genet Epidemiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982682

ABSTRACT

The prediction of the susceptibility of an individual to a certain disease is an important and timely research area. An established technique is to estimate the risk of an individual with the help of an integrated risk model, that is, a polygenic risk score with added epidemiological covariates. However, integrated risk models do not capture any time dependence, and may provide a point estimate of the relative risk with respect to a reference population. The aim of this work is twofold. First, we explore and advocate the idea of predicting the time-dependent hazard and survival (defined as disease-free time) of an individual for the onset of a disease. This provides a practitioner with a much more differentiated view of absolute survival as a function of time. Second, to compute the time-dependent risk of an individual, we use published methodology to fit a Cox's proportional hazard model to data from a genetic SNP study of time to Alzheimer's disease (AD) onset, using the lasso to incorporate further epidemiological variables such as sex, APOE (apolipoprotein E, a genetic risk factor for AD) status, 10 leading principal components, and selected genomic loci. We apply the lasso for Cox's proportional hazards to a data set of 6792 AD patients (composed of 4102 cases and 2690 controls) and 87 covariates. We demonstrate that fitting a lasso model for Cox's proportional hazards allows one to obtain more accurate survival curves than with state-of-the-art (likelihood-based) methods. Moreover, the methodology allows one to obtain personalized survival curves for a patient, thus giving a much more differentiated view of the expected progression of a disease than the view offered by integrated risk models. The runtime to compute personalized survival curves is under a minute for the entire data set of AD patients, thus enabling it to handle datasets with 60,000-100,000 subjects in less than 1 h.

2.
Neural Regen Res ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38993140

ABSTRACT

ABSTRACT: Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type III domain-containing protein 5 (FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-ß and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-ß pathology by increasing the activity/levels of amyloid- ß-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.

3.
medRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38978657

ABSTRACT

Although the genetic locus of X-linked dystonia parkinsonism (XDP), a neurodegenerative disease endemic in the Philippines, is well-characterized, the exact molecular mechanisms leading to neuronal loss are not yet fully understood. Recently, we demonstrated a significant increase in astrogliosis and microgliosis together with an increase in myeloperoxidase (MPO) levels in XDP post-mortem prefrontal cortex (PFC), suggesting a role for neuroinflammation in XDP pathogenesis. Here, we demonstrated a significant increase in MPO activity in XDP PFC using a novel specific MPO-activatable fluorescent agent (MAFA). Additionally, we demonstrated a significant increase in reactive oxygen species (ROS) in XDP-derived fibroblasts as well as in SH-SY5Y cells treated with post-mortem XDP PFC, further supporting a role for MPO in XDP. To determine whether increases in MPO activity were linked to increases in ROS, MPO content was immuno-depleted from XDP PFC [MPO(-)], which resulted in a significant decrease in ROS in SH-SY5Y cells. Consistently, the treatment with verdiperstat, a potent and selective MPO inhibitor, significantly decreased ROS in both XDP-derived fibroblasts and XDP PFC-treated SH-SY5Y cells. Collectively, our results suggest that MPO inhibition mitigates oxidative stress and may provide a novel therapeutic strategy for XDP treatment. Highlights: MPO activity is increased in XDP post-mortem prefrontal cortex.MPO activity is increased in cellular models of XDP.MPO increases reactive oxygen species (ROS) in vitro.Inhibiting MPO mitigates ROS in XDP.The MPO inhibitor, verdiperstat, dampens ROS suggesting a potential therapeutic strategy for XDP.

4.
Nat Rev Neurosci ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898231

ABSTRACT

Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.

5.
Adv Sci (Weinh) ; : e2309021, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923244

ABSTRACT

Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic stratagem for neurodegenerative disorders, particularly Alzheimer's disease (AD). A positron emission tomography (PET) probe enabling brain RIPK1 imaging can provide a powerful tool to unveil the neuropathology associated with RIPK1. Herein, the development of a new PET radioligand, [11C]CNY-10 is reported, which may enable brain RIPK1 imaging. [11C]CNY-10 is radiosynthesized with a high radiochemical yield (41.8%) and molar activity (305 GBq/µmol). [11C]CNY-10 is characterized by PET imaging in rodents and a non-human primate, demonstrating good brain penetration, binding specificity, and a suitable clearance kinetic profile. It is performed autoradiography of [11C]CNY-10 in human AD and healthy control postmortem brain tissues, which shows strong radiosignal in AD brains higher than healthy controls. Subsequently, it is conducted further characterization of RIPK1 in AD using [11C]CNY-10-based PET studies in combination with immunohistochemistry leveraging the 5xFAD mouse model. It is found that AD mice revealed RIPK1 brain signal significantly higher than WT control mice and that RIPK1 is closely related to amyloid plaques in the brain. The studies enable further translational studies of [11C]CNY-10 for AD and potentially other RIPK1-related human studies.

6.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38836403

ABSTRACT

In precision medicine, both predicting the disease susceptibility of an individual and forecasting its disease-free survival are areas of key research. Besides the classical epidemiological predictor variables, data from multiple (omic) platforms are increasingly available. To integrate this wealth of information, we propose new methodology to combine both cooperative learning, a recent approach to leverage the predictive power of several datasets, and polygenic hazard score models. Polygenic hazard score models provide a practitioner with a more differentiated view of the predicted disease-free survival than the one given by merely a point estimate, for instance computed with a polygenic risk score. Our aim is to leverage the advantages of cooperative learning for the computation of polygenic hazard score models via Cox's proportional hazard model, thereby improving the prediction of the disease-free survival. In our experimental study, we apply our methodology to forecast the disease-free survival for Alzheimer's disease (AD) using three layers of data. One layer contains epidemiological variables such as sex, APOE (apolipoprotein E, a genetic risk factor for AD) status and 10 leading principal components. Another layer contains selected genomic loci, and the last layer contains methylation data for selected CpG sites. We demonstrate that the survival curves computed via cooperative learning yield an AUC of around $0.7$, above the state-of-the-art performance of its competitors. Importantly, the proposed methodology returns (1) a linear score that can be easily interpreted (in contrast to machine learning approaches), and (2) a weighting of the predictive power of the involved data layers, allowing for an assessment of the importance of each omic (or other) platform. Similarly to polygenic hazard score models, our methodology also allows one to compute individual survival curves for each patient.


Subject(s)
Alzheimer Disease , Precision Medicine , Humans , Precision Medicine/methods , Alzheimer Disease/genetics , Alzheimer Disease/mortality , Disease-Free Survival , Machine Learning , Proportional Hazards Models , Multifactorial Inheritance , Male , Female , Multiomics
7.
Alzheimers Res Ther ; 16(1): 122, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849944

ABSTRACT

BACKGROUND: Evidence links lifestyle factors with Alzheimer's disease (AD). We report the first randomized, controlled clinical trial to determine if intensive lifestyle changes may beneficially affect the progression of mild cognitive impairment (MCI) or early dementia due to AD. METHODS: A 1:1 multicenter randomized controlled phase 2 trial, ages 45-90 with MCI or early dementia due to AD and a Montreal Cognitive Assessment (MoCA) score of 18 or higher. The primary outcome measures were changes in cognition and function tests: Clinical Global Impression of Change (CGIC), Alzheimer's Disease Assessment Scale (ADAS-Cog), Clinical Dementia Rating-Sum of Boxes (CDR-SB), and Clinical Dementia Rating Global (CDR-G) after 20 weeks of an intensive multidomain lifestyle intervention compared to a wait-list usual care control group. ADAS-Cog, CDR-SB, and CDR-Global scales were compared using a Mann-Whitney-Wilcoxon rank-sum test, and CGIC was compared using Fisher's exact test. Secondary outcomes included plasma Aß42/40 ratio, other biomarkers, and correlating lifestyle with the degree of change in these measures. RESULTS: Fifty-one AD patients enrolled, mean age 73.5. No significant differences in any measures at baseline. Only two patients withdrew. All patients had plasma Aß42/40 ratios <0.0672 at baseline, strongly supporting AD diagnosis. After 20 weeks, significant between-group differences in the CGIC (p= 0.001), CDR-SB (p= 0.032), and CDR Global (p= 0.037) tests and borderline significance in the ADAS-Cog test (p= 0.053). CGIC, CDR Global, and ADAS-Cog showed improvement in cognition and function and CDR-SB showed significantly less progression, compared to the control group which worsened in all four measures. Aß42/40 ratio increased in the intervention group and decreased in the control group (p = 0.003). There was a significant correlation between lifestyle and both cognitive function and the plasma Aß42/40 ratio. The microbiome improved only in the intervention group (p <0.0001). CONCLUSIONS: Comprehensive lifestyle changes may significantly improve cognition and function after 20 weeks in many patients with MCI or early dementia due to AD. TRIAL REGISTRATION: Approved by Western Institutional Review Board on 12/31/2017 (#20172897) and by Institutional Review Boards of all sites. This study was registered retrospectively with clinicaltrials.gov on October 8, 2020 (NCT04606420, ID: 20172897).


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Disease Progression , Life Style , Humans , Male , Female , Aged , Alzheimer Disease/psychology , Aged, 80 and over , Middle Aged , Dementia/psychology , Amyloid beta-Peptides/blood , Neuropsychological Tests , Treatment Outcome
8.
Ann Neurol ; 96(2): 390-404, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38747498

ABSTRACT

OBJECTIVES: Due to increased gene dose for the amyloid precursor protein (APP), elderly adults with Down syndrome (DS) are at a markedly increased risk of Alzheimer's disease (AD), known as DS-AD. How the increased APP gene dose acts and which APP products are responsible for DS-AD is not well understood, thus limiting strategies to target pathogenesis. As one approach to address this question, we used a novel class of γ-secretase modulators that promote γ-site cleavages by the γ-secretase complex, resulting in lower levels of the Aß42 and Aß40 peptides. METHODS: Ts65Dn mice, which serve as a model of DS, were treated via oral gavage with 10 mg/kg/weekday of BPN15606 (a potent and novel pyridazine-containing γ-secretase modulators). Treatment started at 3 months-of-age and lasted for 4 months. RESULTS: Demonstrating successful target engagement, treatment with BPN15606 significantly decreased levels of Aß40 and Aß42 in the cortex and hippocampus; it had no effect on full-length APP or its C-terminal fragments in either 2 N or Ts65Dn mice. Importantly, the levels of total amyloid-ß were not impacted, pointing to BPN15606-mediated enhancement of processivity of γ-secretase. Additionally, BPN15606 rescued hyperactivation of Rab5, a protein responsible for regulating endosome function, and normalized neurotrophin signaling deficits. BPN15606 treatment also normalized the levels of synaptic proteins and tau phosphorylation, while reducing astrocytosis and microgliosis, and countering cognitive deficits. INTERPRETATION: Our findings point to the involvement of increased levels of Aß42 and/or Aß40 in contributing to several molecular and cognitive traits associated with DS-AD. They speak to increased dosage of the APP gene acting through heightened levels of Aß42 and/or Aß40 as supporting pathogenesis. These findings further the interest in the potential use of γ-secretase modulators for treating and possibly preventing AD in individuals with DS. ANN NEUROL 2024;96:390-404.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Disease Models, Animal , Down Syndrome , Mice, Transgenic , Peptide Fragments , Animals , Down Syndrome/drug therapy , Down Syndrome/genetics , Down Syndrome/metabolism , Amyloid beta-Peptides/metabolism , Mice , Amyloid Precursor Protein Secretases/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Male
9.
J Med Chem ; 67(8): 6207-6217, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38607332

ABSTRACT

Sigma-1 receptor (σ1R) is an intracellular protein implicated in a spectrum of neurodegenerative conditions, notably Alzheimer's disease (AD). Positron emission tomography (PET) imaging of brain σ1R could provide a powerful tool for better understanding the underlying pathomechanism of σ1R in AD. In this study, we successfully developed a 18F-labeled σ1R radiotracer [18F]CNY-05 via an innovative ruthenium (Ru)-mediated 18F-deoxyfluorination method. [18F]CNY-05 exhibited preferable brain uptake, high specific binding, and slightly reversible pharmacokinetics within the PET scanning time window. PET imaging of [18F]CNY-05 in nonhuman primates (NHP) indicated brain permeability, metabolic stability, and safety. Moreover, autoradiography and PET studies of [18F]CNY-05 in the AD mouse model found a significantly decreased brain uptake compared to that in wild-type mice. Collectively, we have provided a novel 18F-radiolabeled σ1R PET probe, which enables visualizing brain σ1R in health and neurological diseases.


Subject(s)
Alzheimer Disease , Brain , Fluorine Radioisotopes , Positron-Emission Tomography , Radiopharmaceuticals , Receptors, sigma , Sigma-1 Receptor , Receptors, sigma/metabolism , Animals , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/metabolism , Brain/diagnostic imaging , Fluorine Radioisotopes/chemistry , Positron-Emission Tomography/methods , Mice , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Male , Molecular Imaging/methods , Halogenation , Tissue Distribution , Humans
10.
Alzheimers Dement ; 20(5): 3397-3405, 2024 05.
Article in English | MEDLINE | ID: mdl-38563508

ABSTRACT

INTRODUCTION: Genome-wide association studies have identified numerous disease susceptibility loci (DSLs) for Alzheimer's disease (AD). However, only a limited number of studies have investigated the dependence of the genetic effect size of established DSLs on genetic ancestry. METHODS: We utilized the whole genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP) including 35,569 participants. A total of 25,459 subjects in four distinct populations (African ancestry, non-Hispanic White, admixed Hispanic, and Asian) were analyzed. RESULTS: We found that nine DSLs showed significant heterogeneity across populations. Single nucleotide polymorphism (SNP) rs2075650 in translocase of outer mitochondrial membrane 40 (TOMM40) showed the largest heterogeneity (Cochran's Q = 0.00, I2 = 90.08), followed by other SNPs in apolipoprotein C1 (APOC1) and apolipoprotein E (APOE). Two additional loci, signal-induced proliferation-associated 1 like 2 (SIPA1L2) and solute carrier 24 member 4 (SLC24A4), showed significant heterogeneity across populations. DISCUSSION: We observed substantial heterogeneity for the APOE-harboring 19q13.32 region with TOMM40/APOE/APOC1 genes. The largest risk effect was seen among African Americans, while Asians showed a surprisingly small risk effect.


Subject(s)
Alzheimer Disease , Genetic Predisposition to Disease , Genome-Wide Association Study , Mitochondrial Precursor Protein Import Complex Proteins , Polymorphism, Single Nucleotide , Humans , Alzheimer Disease/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Apolipoproteins E/genetics , Female , Male , Apolipoprotein C-I/genetics , Aged , Membrane Transport Proteins/genetics , Genetic Loci/genetics
11.
Brain Behav Immun Health ; 36: 100743, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435720

ABSTRACT

Alzheimer's disease (AD) involves a complex pathological process that evolves over years, and its etiology is understood as a classic example of gene-environment interaction. The notion that exposure to microbial organisms may play some role in AD pathology has been proposed and debated for decades. New evidence from model organisms and -omic studies, as well as epidemiological data from the recent COVID-19 pandemic and widespread use of vaccines, offers new insights into the "germ hypothesis" of AD. To review new evidence and identify key research questions, the Duke/University of North Carolina (Duke/UNC) Alzheimer's Disease Research Center hosted a virtual symposium and workshop: "New Approaches for Understanding the Potential Role of Microbes in Alzheimer's disease." Discussion centered around the antimicrobial protection hypothesis of amyloid accumulation, and other mechanisms by which microbes could influence AD pathology including immune cell activation, changes in blood-brain barrier, or direct neurotoxicity. This summary of proceedings reviews the content presented in the symposium and provides a summary of major topics and key questions discussed in the workshop.

12.
PLoS One ; 19(2): e0299972, 2024.
Article in English | MEDLINE | ID: mdl-38421989

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0166400.].

13.
Mol Neurodegener ; 19(1): 18, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38365827

ABSTRACT

It has recently become well-established that there is a connection between Alzheimer's disease pathology and gut microbiome dysbiosis. We have previously demonstrated that antibiotic-mediated gut microbiota perturbations lead to attenuation of Aß deposition, phosphorylated tau accumulation, and disease-associated glial cell phenotypes in a sex-dependent manner. In this regard, we were intrigued by the finding that a marine-derived oligosaccharide, GV-971, was reported to alter gut microbiota and reduce Aß amyloidosis in the 5XFAD mouse model that were treated at a point when Aß burden was near plateau levels. Utilizing comparable methodologies, but with distinct technical and temporal features, we now report on the impact of GV-971 on gut microbiota, Aß amyloidosis and microglial phenotypes in the APPPS1-21 model, studies performed at the University of Chicago, and independently in the 5X FAD model, studies performed at Washington University, St. Louis.Methods To comprehensively characterize the effects of GV-971 on the microbiota-microglia-amyloid axis, we conducted two separate investigations at independent institutions. There was no coordination of the experimental design or execution between the two laboratories. Indeed, the two laboratories were not aware of each other's experiments until the studies were completed. Male and female APPPS1-21 mice were treated daily with 40, 80, or 160 mg/kg of GV-971 from 8, when Aß burden was detectable upto 12 weeks of age when Aß burden was near maximal levels. In parallel, and to corroborate existing published studies and further investigate sex-related differences, male and female 5XFAD mice were treated daily with 100 mg/kg of GV-971 from 7 to 9 months of age when Aß burden was near peak levels. Subsequently, the two laboratories independently assessed amyloid-ß deposition, metagenomic, and neuroinflammatory profiles. Finally, studies were initiated at the University of Chicago to evaluate the metabolites in cecal tissue from vehicle and GV-971-treated 5XFAD mice.Results These studies showed that independent of the procedural differences (dosage, timing and duration of treatment) between the two laboratories, cerebral amyloidosis was reduced primarily in male mice, independent of strain. We also observed sex-specific microbiota differences following GV-971 treatment. Interestingly, GV-971 significantly altered multiple overlapping bacterial species at both institutions. Moreover, we discovered that GV-971 significantly impacted microbiome metabolism, particularly by elevating amino acid production and influencing the tryptophan pathway. The metagenomics and metabolomics changes correspond with notable reductions in peripheral pro-inflammatory cytokine and chemokine profiles. Furthermore, GV-971 treatment dampened astrocyte and microglia activation, significantly decreasing plaque-associated reactive microglia while concurrently increasing homeostatic microglia only in male mice. Bulk RNAseq analysis unveiled sex-specific changes in cerebral cortex transcriptome profiles, but most importantly, the transcriptome changes in the GV-971-treated male group revealed the involvement of microglia and inflammatory responses.Conclusions In conclusion, these studies demonstrate the connection between the gut microbiome, neuroinflammation, and Alzheimer's disease pathology while highlighting the potential therapeutic effect of GV-971. GV-971 targets the microbiota-microglia-amyloid axis, leading to the lowering of plaque pathology and neuroinflammatory signatures in a sex-dependent manner when given at the onset of Aß deposition or when given after Aß deposition is already at higher levels.


Subject(s)
Alzheimer Disease , Amyloidosis , Gastrointestinal Microbiome , Humans , Mice , Male , Female , Animals , Alzheimer Disease/metabolism , Microglia/metabolism , Mice, Transgenic , Amyloidosis/metabolism , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/pathology , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Disease Models, Animal
14.
Brain ; 147(6): 2158-2168, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38315899

ABSTRACT

Vascular dysfunction is increasingly recognized as an important contributor to the pathogenesis of Alzheimer's disease. Alterations in vascular endothelial growth factor (VEGF) pathways have been implicated as potential mechanisms. However, the specific impact of VEGF proteins in preclinical Alzheimer's disease and their relationships with other Alzheimer's disease and vascular pathologies during this critical early period remain to be elucidated. We included 317 older adults from the Harvard Aging Brain Study, a cohort of individuals who were cognitively unimpaired at baseline and followed longitudinally for up to 12 years. Baseline VEGF family protein levels (VEGFA, VEGFC, VEGFD, PGF and FLT1) were measured in fasting plasma using high-sensitivity immunoassays. Using linear mixed effects models, we examined the interactive effects of baseline plasma VEGF proteins and amyloid PET burden (Pittsburgh Compound-B) on longitudinal cognition (Preclinical Alzheimer Cognitive Composite-5). We further investigated if effects on cognition were mediated by early neocortical tau accumulation (flortaucipir PET burden in the inferior temporal cortex) or hippocampal atrophy. Lastly, we examined the impact of adjusting for baseline cardiovascular risk score or white matter hyperintensity volume. Baseline plasma VEGFA and PGF each showed a significant interaction with amyloid burden on prospective cognitive decline. Specifically, low VEGFA and high PGF were associated with greater cognitive decline in individuals with elevated amyloid, i.e. those on the Alzheimer's disease continuum. Concordantly, low VEGFA and high PGF were associated with accelerated longitudinal tau accumulation in those with elevated amyloid. Moderated mediation analyses confirmed that accelerated tau accumulation fully mediated the effects of low VEGFA and partially mediated (31%) the effects of high PGF on faster amyloid-related cognitive decline. The effects of VEGFA and PGF on tau and cognition remained significant after adjusting for cardiovascular risk score or white matter hyperintensity volume. There were concordant but non-significant associations with longitudinal hippocampal atrophy. Together, our findings implicate low VEGFA and high PGF in accelerating early neocortical tau pathology and cognitive decline in preclinical Alzheimer's disease. Additionally, our results underscore the potential of these minimally-invasive plasma biomarkers to inform the risk of Alzheimer's disease progression in the preclinical population. Importantly, VEGFA and PGF appear to capture distinct effects from vascular risks and cerebrovascular injury. This highlights their potential as new therapeutic targets, in combination with anti-amyloid and traditional vascular risk reduction therapies, to slow the trajectory of preclinical Alzheimer's disease and delay or prevent the onset of cognitive decline.


Subject(s)
Alzheimer Disease , Cognition , Vascular Endothelial Growth Factor A , tau Proteins , Humans , Alzheimer Disease/blood , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Male , Female , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor A/metabolism , Aged , tau Proteins/metabolism , tau Proteins/blood , Longitudinal Studies , Aged, 80 and over , Cognition/physiology , Positron-Emission Tomography , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/blood , Biomarkers/blood
15.
Sci Rep ; 14(1): 1827, 2024 01 21.
Article in English | MEDLINE | ID: mdl-38246956

ABSTRACT

It is well-established that women are disproportionately affected by Alzheimer's disease. The mechanisms underlying this sex-specific disparity are not fully understood, but several factors that are often associated-including interactions of sex hormones, genetic factors, and the gut microbiome-likely contribute to the disease's etiology. Here, we have examined the role of sex hormones and the gut microbiome in mediating Aß amyloidosis and neuroinflammation in APPPS1-21 mice. We report that postnatal gut microbiome perturbation in female APPPS1-21 mice leads to an elevation in levels of circulating estradiol. Early stage ovariectomy (OVX) leads to a reduction of plasma estradiol that is correlated with a significant alteration of gut microbiome composition and reduction in Aß pathology. On the other hand, supplementation of OVX-treated animals with estradiol restores Aß burden and influences gut microbiome composition. The reduction of Aß pathology with OVX is paralleled by diminished levels of plaque-associated microglia that acquire a neurodegenerative phenotype (MGnD-type) while estradiol supplementation of OVX-treated animals leads to a restoration of activated microglia around plaques. In summary, our investigation elucidates the complex interplay between sex-specific hormonal modulations, gut microbiome dynamics, metabolic perturbations, and microglial functionality in the pathogenesis of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Male , Female , Humans , Animals , Mice , Microglia , Amyloidogenic Proteins , Estradiol , Plaque, Amyloid
16.
Adv Sci (Weinh) ; 11(1): e2304545, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37990786

ABSTRACT

Histone deacetylase 6 (HDAC6) is one of the key histone deacetylases (HDACs) that regulates various cellular functions including clearance of misfolded protein and immunological responses. Considerable evidence suggests that HDAC6 is closely related to amyloid and tau pathology, the two primary hallmarks of Alzheimer's disease (AD). It is still unclear whether HDAC6 expression changes with amyloid deposition in AD during disease progression or HDAC6 may be regulating amyloid phagocytosis or neuroinflammation or other neuropathological changes in AD. In this work, the pathological accumulation of HDAC6 in AD brains over age as well as the relationship of its regulatory activity - with amyloid pathogenesis and pathophysiological alterations is aimed to be enlightened using the newly developed HDAC6 inhibitor (HDAC6i) PB118 in microglia BV2 cell and 3D-AD human neural culture model. Results suggest that the structure-based rational design led to biologically compelling HDAC6i PB118 with multiple mechanisms that clear Aß deposits by upregulating phagocytosis, improve tubulin/microtubule network by enhancing acetyl α-tubulin levels, regulate different cytokines and chemokines responsible for inflammation, and significantly reduce phospho-tau (p-tau) levels associated with AD. These findings indicate that HDAC6 plays key roles in the pathophysiology of AD and potentially serves as a suitable pharmacological target through chemical biology-based drug discovery in AD.


Subject(s)
Alzheimer Disease , Humans , Histone Deacetylase 6 , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Tubulin/metabolism
17.
J Med Chem ; 67(1): 555-571, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38150705

ABSTRACT

The NOD-like receptor (NLR) family pyrin-domain-containing 3 (NLRP3) inflammasome, an essential component of the innate immune system, has been emerging as a viable drug target and a potential biomarker for human diseases. In our efforts to develop novel small molecule NLRP3 inhibitors, a 1-(5-chloro-2-methoxybenzyl)-4-phenyl-1H-1,2,3-triazole scaffold was designed via a rational approach based on our previous leads. Structure-activity relationship studies and biophysical studies identified a new lead compound 8 as a potent (IC50: 0.55 ± 0.16 µM), selective, and direct NLRP3 inhibitor. Positron emission tomography (PET) imaging studies of [11C]8 demonstrated its rapid and high brain uptake as well as fast washout in mice and rhesus macaque. Notably, plasma kinetic analysis of this radiotracer from the PET/magnetic resonance imaging studies in rhesus macaque suggested radiometabolic stability. Collectively, our data not only encourage further studies of this lead compound but also warrant further optimization to generate additional novel NLRP3 inhibitors and suitable central nervous system PET radioligands with translational promise.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , Humans , Macaca mulatta , Kinetics , Positron-Emission Tomography
18.
Front Neurol ; 14: 1291020, 2023.
Article in English | MEDLINE | ID: mdl-38107629

ABSTRACT

Introduction: The 21-point Brain Care Score (BCS) was developed through a modified Delphi process in partnership with practitioners and patients to promote behavior changes and lifestyle choices in order to sustainably reduce the risk of dementia and stroke. We aimed to assess the associations of the BCS with risk of incident dementia and stroke. Methods: The BCS was derived from the United Kingdom Biobank (UKB) baseline evaluation for participants aged 40-69 years, recruited between 2006-2010. Associations of BCS and risk of subsequent incident dementia and stroke were estimated using Cox proportional hazard regressions, adjusted for sex assigned at birth and stratified by age groups at baseline. Results: The BCS (median: 12; IQR:11-14) was derived for 398,990 UKB participants (mean age: 57; females: 54%). There were 5,354 incident cases of dementia and 7,259 incident cases of stroke recorded during a median follow-up of 12.5 years. A five-point higher BCS at baseline was associated with a 59% (95%CI: 40-72%) lower risk of dementia among participants aged <50. Among those aged 50-59, the figure was 32% (95%CI: 20-42%) and 8% (95%CI: 2-14%) for those aged >59 years. A five-point higher BCS was associated with a 48% (95%CI: 39-56%) lower risk of stroke among participants aged <50, 52% (95%CI, 47-56%) among those aged 50-59, and 33% (95%CI, 29-37%) among those aged >59. Discussion: The BCS has clinically relevant and statistically significant associations with risk of dementia and stroke in approximately 0.4 million UK people. Future research includes investigating the feasibility, adaptability and implementation of the BCS for patients and providers worldwide.

19.
J Med Chem ; 66(23): 16075-16090, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37972387

ABSTRACT

Recent studies have shown that the epigenetic protein histone deacetylase 11 (HDAC11) is highly expressed in the brain and critically modulates neuroimmune functions, making it a potential therapeutic target for neurological disorders. Herein, we report the development of PB94, which is a novel HDAC11 inhibitor. PB94 exhibited potency and selectivity against HDAC11 with IC50 = 108 nM and >40-fold selectivity over other HDAC isoforms. Pharmacokinetic/pharmacodynamic evaluation indicated that PB94 possesses promising drug-like properties. Additionally, PB94 was radiolabeled with carbon-11 as [11C]PB94 for positron emission tomography (PET), which revealed significant brain uptake and metabolic properties suitable for drug development in live animals. Furthermore, we demonstrated that neuropathic pain was associated with brain upregulation of HDAC11 and that pharmacological inhibition of HDAC11 by PB94 ameliorated neuropathic pain in a mouse model. Collectively, our findings support further development of PB94 as a selective HDAC11 inhibitor for neurological indications, including pain.


Subject(s)
Neuralgia , Neuroinflammatory Diseases , Animals , Mice , Brain/metabolism , Histone Deacetylases/metabolism , Neuralgia/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use
20.
Res Sq ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37986905

ABSTRACT

The recently discovered interaction between presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for the generation of amyloid-ß(Aß) peptides, and GLT-1, the major glutamate transporter in the brain (EAAT2 in the human) may provide a mechanistic link between two important pathological aspects of Alzheimer's disease (AD): abnormal Aßoccurrence and neuronal network hyperactivity. In the current study, we employed a FRET-based approach, fluorescence lifetime imaging microscopy (FLIM), to characterize the PS1/GLT-1 interaction in its native environment in the brain tissue of sporadic AD (sAD) patients. There was significantly less interaction between PS1 and GLT-1 in sAD brains, compared to tissue from patients with frontotemporal lobar degeneration (FTLD), or non-demented age-matched controls. Since PS1 has been shown to adopt pathogenic "closed" conformation in sAD but not in FTLD, we assessed the impact of changes in PS1 conformation on the interaction. Familial AD (fAD) PS1 mutations which induce a "closed" PS1 conformation similar to that in sAD brain and gamma-secretase modulators (GSMs) which induce a "relaxed" conformation, reduced and increased the interaction, respectively. This indicates that PS1 conformation seems to have a direct effect on the interaction with GLT-1. Furthermore, using biotinylation/streptavidin pull-down, western blotting, and cycloheximide chase assays, we determined that the presence of PS1 increased GLT-1 cell surface expression and GLT-1 homomultimer formation, but did not impact GLT-1 protein stability. Together, the current findings suggest that the newly described PS1/GLT-1 interaction endows PS1 with chaperone activity, modulating GLT-1 transport to the cell surface and stabilizing the dimeric-trimeric states of the protein. The diminished PS1/GLT-1 interaction suggests that these functions of the interaction may not work properly in AD.

SELECTION OF CITATIONS
SEARCH DETAIL