Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Epilepsia ; 65(7): 1868-1878, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38722693

ABSTRACT

Intracranial electroencephalographic (IEEG) recording, using subdural electrodes (SDEs) and stereoelectroencephalography (SEEG), plays a pivotal role in localizing the epileptogenic zone (EZ). SDEs, employed for superficial cortical seizure foci localization, provide information on two-dimensional seizure onset and propagation. In contrast, SEEG, with its three-dimensional sampling, allows exploration of deep brain structures, sulcal folds, and bihemispheric networks. SEEG offers the advantages of fewer complications, better tolerability, and coverage of sulci. Although both modalities allow electrical stimulation, SDE mapping can tessellate cortical gyri, providing the opportunity for a tailored resection. With SEEG, both superficial gyri and deep sulci can be stimulated, and there is a lower risk of afterdischarges and stimulation-induced seizures. Most systematic reviews and meta-analyses have addressed the comparative effectiveness of SDEs and SEEG in localizing the EZ and achieving seizure freedom, although discrepancies persist in the literature. The combination of SDEs and SEEG could potentially overcome the limitations inherent to each technique individually, better delineating seizure foci. This review describes the strengths and limitations of SDE and SEEG recordings, highlighting their unique indications in seizure localization, as evidenced by recent publications. Addressing controversies in the perceived usefulness of the two techniques offers insights that can aid in selecting the most suitable IEEG in clinical practice.


Subject(s)
Electrocorticography , Subdural Space , Humans , Electrocorticography/methods , Electrocorticography/instrumentation , Electrodes, Implanted , Electroencephalography/methods , Epilepsy/physiopathology , Epilepsy/diagnosis , Brain Mapping/methods , Stereotaxic Techniques , Electrodes , Brain/physiopathology , Brain/physiology
2.
Clin Neurophysiol ; 160: 121-129, 2024 04.
Article in English | MEDLINE | ID: mdl-38422970

ABSTRACT

OBJECTIVE: To investigate the association between subclinical seizures detected on intracranial electroencephalographic (i-SCSs)recordings and mesial temporal sclerosis (MTS), as well as their impact on surgical outcomes of stereotactic laser amygdalohippocampotomy (SLAH). METHODS: A retrospective review was conducted on 27 patients with drug-resistant mesial temporal lobe epilepsy (MTLE) who underwent SLAH. The number of seizures detected on scalp EEG and iEEG was assessed. Patients were followed for a minimum of 3 years after SLAH. RESULTS: Of the 1715 seizures recorded from mesial temporal regions, 1640 were identified as i-SCSs. Patients with MTS were associated with favorable short- and long-term surgical outcomes. Patients with MTS had a higher number of i-SCSs compared to patients without MTS. The numbers of i-SCSs were higher in patients with Engel I-II outcomes, but no significant statistical difference was found. However, it was observed that patients with MTS who achieved Engel I-II classification had higher numbers of i-SCSs than patients without MTS (P < 0.05). CONCLUSION: Patients with MTS exhibited favorable short-term and long-term surgical outcome after SLAH. A higher number of i-SCSs was significantly associated with MTS in patients with MTLE. The number of i-SCSs tended to be higher in patients with Engel Ⅰ-Ⅱ surgical outcomes. SIGNIFICANCE: The association between i-SCSs, MTS, and surgical outcomes in MTLE patients undergoing SLAH has significant implications for understanding the underlying mechanisms and identifying potential therapeutic targets to enhance surgical outcomes.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/diagnosis , Epilepsy, Temporal Lobe/surgery , Treatment Outcome , Seizures/surgery , Drug Resistant Epilepsy/surgery , Lasers
3.
Front Med (Lausanne) ; 10: 1180541, 2023.
Article in English | MEDLINE | ID: mdl-37465642

ABSTRACT

Objective: To investigate the value of 18F-FDG positron emission tomography/computed tomography (PET/CT) two time point imaging for the identification of the potential epileptogenic zone (EZ) in temporal lobe epilepsy (TLE). Methods: Fifty-two patients with TLE were prospectively enrolled in the 18F-FDG PET/CT two time point imaging study. The early imaging was obtained approximately 40 min (43.44 ± 18.04 min) after 18F-FDG injection, and the delayed imaging was obtained about 2 to 3 h (160.46 ± 28.70 min) after the injection. Visual and semi-quantitative analysis of 18F-FDG uptake were performed at the two time points in EZ and contralateral symmetrical region. The mean standardized uptake value (SUVmean) of EZ and contralateral symmetrical region was calculated to determine the asymmetry index (AI) of the early and delayed images, as well as in the MRI positive and negative patient groups. Results: Semi-quantitative analysis demonstrated that AI of the early and delayed 18F-FDG PET/CT images was 13.47 ± 6.10 and 16.43 ± 6.66, respectively. The ΔAI was 2.95 ± 3.05 in 52 TLE patients between the two time points. The AI of the EZ was significantly elevated in delayed images compared to the early images (p < 0.001). The AI of delayed imaging was also significantly elevated compared to the early imaging in both MRI positive (ΔAI = 2.81 ± 2.54, p < 0.001) and MRI negative (ΔAI = 3.21 ± 3.91, p < 0.003) groups, and more pronounced in MRI negative group. Visual analysis also showed that the delayed imaging appeared to be superior to the early imaging for identification of potential EZ. Conclusion: Delayed 18F-FDG PET imaging provided significantly better than the early imaging in the identification of potential EZ, which can be valuable during epilepsy pre-surgical evaluation in patients with TLE.

4.
Ann Clin Transl Neurol ; 10(8): 1407-1416, 2023 08.
Article in English | MEDLINE | ID: mdl-37329164

ABSTRACT

BACKGROUND: Anti-metabotropic glutamate receptor 5 (mGluR5) encephalitis is a rare and under-recognized autoimmune encephalitis. This study is conducted to characterize its clinical and neuroimaging features. METHODS: Twenty-nine patients with anti-mGluR5 encephalitis (15 new cases identified in this study and 14 previously reported cases) were included in this study and their clinical features were characterized. Brain MRI volumetric analysis using FreeSurfer software was performed in 9 new patients and compared with 25 healthy controls at both early (≤6 months of onset) and chronic (>1 year of onset) disease stages. RESULTS: The common clinical manifestations of anti-mGluR5 encephalitis included cognitive deficits (n = 21, 72.4%), behavioral and mood disturbances (n = 20, 69%), seizures (n = 16, 55.2%), and sleep disorder (n = 13, 44.8%). Tumors were observed in 7 patients. Brain MRI T2/FLAIR signal hyperintensities were observed predominantly in mesiotemporal and subcortical regions in 75.9% patients. MRI volumetric analysis demonstrated significant amygdala enlargement in both early and chronic disease stages compared to healthy controls (P < 0.001). Twenty-six patients had complete or partial recovery, one remained stable, one died and one was lost to follow-up. CONCLUSION: Our findings demonstrated that cognitive impairment, behavioral disturbance, seizures, and sleep disorder are the prominent clinical manifestations of anti-mGluR5 encephalitis. Most patients showed a good prognosis with full recovery, even in the paraneoplastic disease variants. The amygdala enlargement in the early and chronic disease stages is a distinct MRI feature, which exploratively offer a valuable perspective for the study of the disease processes.


Subject(s)
Encephalitis , Sleep Wake Disorders , Humans , Magnetic Resonance Imaging , Neuroimaging , Encephalitis/diagnostic imaging , Seizures , Brain/diagnostic imaging
5.
Epilepsia ; 64(6): 1568-1581, 2023 06.
Article in English | MEDLINE | ID: mdl-37013668

ABSTRACT

OBJECTIVE: Stereotactic laser amygdalohippocampotomy (SLAH) is an appealing option for patients with temporal lobe epilepsy, who often require intracranial monitoring to confirm mesial temporal seizure onset. However, given limited spatial sampling, it is possible that stereotactic electroencephalography (stereo-EEG) may miss seizure onset elsewhere. We hypothesized that stereo-EEG seizure onset patterns (SOPs) may differentiate between primary onset and secondary spread and predict postoperative seizure control. In this study, we characterized the 2-year outcomes of patients who underwent single-fiber SLAH after stereo-EEG and evaluated whether stereo-EEG SOPs predict postoperative seizure freedom. METHODS: This retrospective five-center study included patients with or without mesial temporal sclerosis (MTS) who underwent stereo-EEG followed by single-fiber SLAH between August 2014 and January 2022. Patients with causative hippocampal lesions apart from MTS or for whom the SLAH was considered palliative were excluded. An SOP catalogue was developed based on literature review. The dominant pattern for each patient was used for survival analysis. The primary outcome was 2-year Engel I classification or recurrent seizures before then, stratified by SOP category. RESULTS: Fifty-eight patients were included, with a mean follow-up duration of 39 ± 12 months after SLAH. Overall 1-, 2-, and 3-year Engel I seizure freedom probability was 54%, 36%, and 33%, respectively. Patients with SOPs, including low-voltage fast activity or low-frequency repetitive spiking, had a 46% 2-year seizure freedom probability, compared to 0% for patients with alpha or theta frequency repetitive spiking or theta or delta frequency rhythmic slowing (log-rank test, p = .00015). SIGNIFICANCE: Patients who underwent SLAH after stereo-EEG had a low probability of seizure freedom at 2 years, but SOPs successfully predicted seizure recurrence in a subset of patients. This study provides proof of concept that SOPs distinguish between hippocampal seizure onset and spread and supports using SOPs to improve selection of SLAH candidates.


Subject(s)
Epilepsy, Temporal Lobe , Humans , Retrospective Studies , Treatment Outcome , Epilepsy, Temporal Lobe/diagnosis , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/complications , Seizures/diagnosis , Seizures/surgery , Seizures/complications , Electroencephalography , Lasers , Magnetic Resonance Imaging
6.
Epilepsia ; 64(3): 539-552, 2023 03.
Article in English | MEDLINE | ID: mdl-36617338

ABSTRACT

Homeostatic plasticity allows neural circuits to maintain an average activity level while preserving the ability to learn new associations and efficiently transmit information. This dynamic process usually protects the brain from excessive activity, like seizures. However, in certain contexts, homeostatic plasticity might produce seizures, either in response to an acute provocation or more chronically as a driver of epileptogenesis. Here, we review three seizure conditions in which homeostatic plasticity likely plays an important role: acute drug withdrawal seizures, posttraumatic or disconnection epilepsy, and cyclic seizures. Identifying the homeostatic mechanisms active at different stages of development and in different circuits could allow better targeting of therapies, including determining when neuromodulation might be most effective, proposing ways to prevent epileptogenesis, and determining how to disrupt the cycle of recurring seizure clusters.


Subject(s)
Epilepsy , Humans , Seizures , Brain , Homeostasis/physiology , Neuronal Plasticity
7.
J Clin Neurophysiol ; 40(2): 144-150, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-34010227

ABSTRACT

PURPOSE: Epileptiform activity limited to deep sources such as the hippocampus currently lacks reliable scalp correlates. Recent studies, however, have found that a subset of hippocampal interictal discharges may be associated with visible scalp signals, suggesting that some types of hippocampal activity may be monitored noninvasively. The purpose of this study is to characterize the relationship between these scalp waveforms and the underlying intracranial activity. METHODS: Paired intracranial and scalp EEG recordings obtained from 16 patients were used to identify hippocampal interictal discharges. Discharges were grouped by waveform shape, and spike-triggered averages of the intracranial and scalp signals were calculated for each group. Cross-correlation of intracranial and scalp spike-triggered averages was used to determine their temporal relationship, and topographic maps of the scalp were generated for each group. RESULTS: Cross-correlation of intracranial and scalp correlates resulted in two classes of scalp waveforms-those with and without time delays from the associated hippocampal discharges. Scalp signals with no delay showed topographies with a broad field with higher amplitudes on the side ipsilateral to the discharges and a left-right flip in polarity-observations consistent with the volume conduction of a single unilateral deep source. In contrast, scalp correlates with time lags showed rotational dynamics, suggesting synaptic propagation mechanisms. CONCLUSIONS: The temporal relationship between the intracranial and scalp signals suggests that both volume conduction and synaptic propagation contribute to these scalp manifestations. Furthermore, the topographic evolution of these scalp waveforms may be used to distinguish spikes that are limited to the hippocampus from those that travel to or engage other brain areas.


Subject(s)
Epilepsy, Temporal Lobe , Scalp , Humans , Patient Discharge , Electroencephalography/methods , Hippocampus , Brain
8.
Brain ; 146(4): 1357-1372, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36074901

ABSTRACT

The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients. In silico modelling suggested that the patient variants interfere with the interactions between the ATP6V0C and ATP6V0A subunits during ATP hydrolysis. Consistent with decreased vacuolar H+-ATPase activity, functional analyses conducted in Saccharomyces cerevisiae revealed reduced LysoSensor fluorescence and reduced growth in media containing varying concentrations of CaCl2. Knockdown of ATP6V0C in Drosophila resulted in increased duration of seizure-like behaviour, and the expression of selected patient variants in Caenorhabditis elegans led to reduced growth, motor dysfunction and reduced lifespan. In summary, this study establishes ATP6V0C as an important disease gene, describes the clinical features of the associated neurodevelopmental disorder and provides insight into disease mechanisms.


Subject(s)
Epilepsy , Vacuolar Proton-Translocating ATPases , Humans , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Epilepsy/genetics , Adenosine Triphosphate
9.
Proc Natl Acad Sci U S A ; 119(44): e2123430119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279460

ABSTRACT

Human accomplishments depend on learning, and effective learning depends on consolidation. Consolidation is the process whereby new memories are gradually stored in an enduring way in the brain so that they can be available when needed. For factual or event knowledge, consolidation is thought to progress during sleep as well as during waking states and to be mediated by interactions between hippocampal and neocortical networks. However, consolidation is difficult to observe directly but rather is inferred through behavioral observations. Here, we investigated overnight memory change by measuring electrical activity in and near the hippocampus. Electroencephalographic (EEG) recordings were made in five patients from electrodes implanted to determine whether a surgical treatment could relieve their seizure disorders. One night, while each patient slept in a hospital monitoring room, we recorded electrophysiological responses to 10 to 20 specific sounds that were presented very quietly, to avoid arousal. Half of the sounds had been associated with objects and their precise spatial locations that patients learned before sleep. After sleep, we found systematic improvements in spatial recall, replicating prior results. We assume that when the sounds were presented during sleep, they reactivated and strengthened corresponding spatial memories. Notably, the sounds also elicited oscillatory intracranial EEG activity, including increases in theta, sigma, and gamma EEG bands. Gamma responses, in particular, were consistently associated with the degree of improvement in spatial memory exhibited after sleep. We thus conclude that this electrophysiological activity in the hippocampus and adjacent medial temporal cortex reflects sleep-based enhancement of memory storage.


Subject(s)
Memory Consolidation , Humans , Sleep/physiology , Mental Recall/physiology , Brain , Hippocampus/physiology , Spatial Memory
10.
Front Neurol ; 13: 941903, 2022.
Article in English | MEDLINE | ID: mdl-36147043

ABSTRACT

Objective: To assess risk factors for encephalopathy in non-ICU hospitalized patients with COVID-19 and the effect of encephalopathy on short-term outcomes. Methods: We collected clinical and electrophysiological characteristics of fifty patients with COVID-19 infection admitted to a ward service and who had an electroencephalogram (EEG) performed. Associations with short-term outcomes including hospital length of stay and discharge disposition were determined from univariate and multivariate statistical analysis. Results: Clinical delirium was associated with encephalopathy on EEG, cefepime use was associated with increased length of stay, and of all factors analyzed, background frequency on EEG alone was correlated with discharge disposition. Conclusion: Encephalopathy is one of the major determinants of short-term outcomes in hospitalized non-ICU patients with COVID-19.

11.
J Neurophysiol ; 127(6): 1547-1563, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35507478

ABSTRACT

Sounds enhance our ability to detect, localize, and respond to co-occurring visual targets. Research suggests that sounds improve visual processing by resetting the phase of ongoing oscillations in visual cortex. However, it remains unclear what information is relayed from the auditory system to visual areas and if sounds modulate visual activity even in the absence of visual stimuli (e.g., during passive listening). Using intracranial electroencephalography (iEEG) in humans, we examined the sensitivity of visual cortex to three forms of auditory information during a passive listening task: auditory onset responses, auditory offset responses, and rhythmic entrainment to sounds. Because some auditory neurons respond to both sound onsets and offsets, visual timing and duration processing may benefit from each. In addition, if auditory entrainment information is relayed to visual cortex, it could support the processing of complex stimulus dynamics that are aligned between auditory and visual stimuli. Results demonstrate that in visual cortex, amplitude-modulated sounds elicited transient onset and offset responses in multiple areas, but no entrainment to sound modulation frequencies. These findings suggest that activity in visual cortex (as measured with iEEG in response to auditory stimuli) may not be affected by temporally fine-grained auditory stimulus dynamics during passive listening (though it remains possible that this signal may be observable with simultaneous auditory-visual stimuli). Moreover, auditory responses were maximal in low-level visual cortex, potentially implicating a direct pathway for rapid interactions between auditory and visual cortices. This mechanism may facilitate perception by time-locking visual computations to environmental events marked by auditory discontinuities.NEW & NOTEWORTHY Using intracranial electroencephalography (iEEG) in humans during a passive listening task, we demonstrate that sounds modulate activity in visual cortex at both the onset and offset of sounds, which likely supports visual timing and duration processing. However, more complex auditory rate information did not affect visual activity. These findings are based on one of the largest multisensory iEEG studies to date and reveal the type of information transmitted between auditory and visual regions.


Subject(s)
Auditory Cortex , Visual Cortex , Acoustic Stimulation/methods , Auditory Cortex/physiology , Auditory Perception/physiology , Humans , Sound , Visual Cortex/physiology , Visual Perception/physiology
12.
Epilepsy Res ; 182: 106914, 2022 05.
Article in English | MEDLINE | ID: mdl-35367692

ABSTRACT

OBJECTIVE: To identify scalp EEG correlates of hippocampal spikes in patients with mesial temporal lobe epilepsy (mTLE). METHODS: We recorded scalp and intracranial EEG simultaneously in 20 consecutive surgical candidates with mTLE. Hippocampal spikes were identified from depth electrodes during the first hour of sleep on the first night of recording in the epilepsy monitoring unit, and their scalp EEG correlates were identified. RESULTS: Hippocampal spiking rates varied widely from 101 to 2187 (556 ± 672, mean ± SD) spikes per hour among the subjects. Of the 16,398 hippocampal spikes observed in this study, 492 (3.0%) of hippocampal spikes with extensive involvement of lateral temporal cortex were associated with scalp interictal epileptiform discharges (IEDs) including spikes and sharp waves; 198 (1.2%) of hippocampal spikes with limited involvement of lateral temporal cortex were associated with sharp transients or sharp slow waves, and 78 (0.05%)of hippocampal spikes with no lateral temporal involvement were associated with small sharp spikes (SSS). SSS were not correlated with independent temporal neocortical spikes. CONCLUSIONS: There are morphologically heterogeneous scalp EEG correlates of hippocampal spikes including SSS, sharp transients, sharp slow waves, spikes, and sharp waves. SSS correlate with hippocampal spikes and are likely an EEG marker for mTLE. These findings have important clinical implications for the diagnosis and localization of mTLE, and provide new perspectives on criteria for defining scalp IEDs.


Subject(s)
Epilepsy, Temporal Lobe , Scalp , Electroencephalography , Epilepsy, Temporal Lobe/diagnosis , Epilepsy, Temporal Lobe/surgery , Hippocampus , Humans , Temporal Lobe
13.
Eur J Neurosci ; 54(9): 7301-7317, 2021 11.
Article in English | MEDLINE | ID: mdl-34587350

ABSTRACT

Speech perception is a central component of social communication. Although principally an auditory process, accurate speech perception in everyday settings is supported by meaningful information extracted from visual cues. Visual speech modulates activity in cortical areas subserving auditory speech perception including the superior temporal gyrus (STG). However, it is unknown whether visual modulation of auditory processing is a unitary phenomenon or, rather, consists of multiple functionally distinct processes. To explore this question, we examined neural responses to audiovisual speech measured from intracranially implanted electrodes in 21 patients with epilepsy. We found that visual speech modulated auditory processes in the STG in multiple ways, eliciting temporally and spatially distinct patterns of activity that differed across frequency bands. In the theta band, visual speech suppressed the auditory response from before auditory speech onset to after auditory speech onset (-93 to 500 ms) most strongly in the posterior STG. In the beta band, suppression was seen in the anterior STG from -311 to -195 ms before auditory speech onset and in the middle STG from -195 to 235 ms after speech onset. In high gamma, visual speech enhanced the auditory response from -45 to 24 ms only in the posterior STG. We interpret the visual-induced changes prior to speech onset as reflecting crossmodal prediction of speech signals. In contrast, modulations after sound onset may reflect a decrease in sustained feedforward auditory activity. These results are consistent with models that posit multiple distinct mechanisms supporting audiovisual speech perception.


Subject(s)
Auditory Cortex , Speech Perception , Acoustic Stimulation , Auditory Perception , Humans , Speech , Visual Perception
14.
Epilepsy Behav Rep ; 16: 100459, 2021.
Article in English | MEDLINE | ID: mdl-34235417

ABSTRACT

Introduction: NPRL3 gene mutations cause autosomal dominant familial focal epilepsy of variable foci (FFEVF) and is characterized by focal epilepsy arising from different brain regions including temporal, frontal, parietal and occipital lobes. About 50% of patients with NPRL3 related epilepsy are resistant to medical treatment. Method: We present a case of 27 years old man with NPRL3 related focal drug-resistant epilepsy. Stereotactic EEG showed two independent seizure foci, namely, left hippocampus and left orbitofrontal cortices. He underwent laser interstitial thermal therapy for ablating both foci in the same procedure that led to seizure cessation. Conclusion: laser interstitial thermal therapy can be an effective treatment for drug resistant NPRL3 related focal epilepsy with better tolerance and less morbidity as compared to open surgical resection, particularly in those with multiple seizure foci.

15.
J Neurosurg ; 135(6): 1742-1751, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34087803

ABSTRACT

OBJECTIVE: The authors aimed to examine the relationship between mesial temporal subregion ablation volume and seizure outcome in a diverse cohort of patients who underwent stereotactic laser amygdalohippocampotomy (SLAH) for mesial temporal lobe epilepsy (MTLE). METHODS: Seizure outcomes and pre- and postoperative images were retrospectively reviewed in patients with MTLE who underwent SLAH at a single institution. Mesial temporal subregions and the contrast-enhancing ablation volume were manually segmented. Pre- and postoperative MR images were coregistered to assess anatomical ablation. Postoperative MRI and ablation volumes were also spatially normalized, enabling the assessment of seizure outcome with heat maps. RESULTS: Twenty-eight patients with MTLE underwent SLAH, 15 of whom had mesial temporal sclerosis (MTS). The rate of Engel class I outcome at 1 year after SLAH was 39% overall: 47% in patients with MTS and 31% in patients without MTS. The percentage of parahippocampal gyrus (PHG) ablated was higher in patients with an Engel class I outcome (40% vs 25%, p = 0.04). Subregion analysis revealed that extent of ablation in the parahippocampal cortex (35% vs 19%, p = 0.03) and angular bundle (64% vs 43%, p = 0.02) was positively associated with Engel class I outcome. The degree of amygdalohippocampal complex (AHC) ablated was not associated with seizure outcome (p = 0.30). CONCLUSIONS: Although the AHC was the described target of SLAH, seizure outcome in this cohort was associated with degree of ablation for the PHG, not the AHC. Complete coverage of both the AHC and PHG is technically challenging, and more work is needed to optimize seizure outcome after SLAH.

16.
Front Neurol ; 12: 654668, 2021.
Article in English | MEDLINE | ID: mdl-34079512

ABSTRACT

Objective: To assess the seizure outcomes of stereotactic laser amygdalohippocampectomy (SLAH) in consecutive patients with mesial temporal lobe epilepsy (mTLE) in a single center and identify scalp EEG and imaging factors in the presurgical evaluation that correlate with post-surgical seizure recurrence. Methods: We retrospectively reviewed the medical and EEG records of 30 patients with drug-resistant mTLE who underwent SLAH and had at least 1 year of follow-up. Surgical outcomes were classified using the Engel scale. Univariate hazard ratios were used to evaluate the risk factors associated with seizure recurrence after SLAH. Results: The overall Engel class I outcome after SLAH was 13/30 (43%), with a mean postoperative follow-up of 48.9 ± 17.6 months. Scalp EEG findings of interictal regional slow activity (IRSA) on the side of surgery (HR = 4.05, p = 0.005) and non-lateralizing or contra-lateralizing seizure onset (HR = 4.31, p = 0.006) were negatively correlated with postsurgical seizure freedom. Scalp EEG with either one of the above features strongly predicted seizure recurrence after surgery (HR = 7.13, p < 0.001) with 100% sensitivity and 71% specificity. Significance: Understanding the factors associated with good or poor surgical outcomes can help choose the best candidates for SLAH. Of the variables assessed, scalp EEG findings were the most clearly associated with seizure outcomes after SLAH.

17.
Epilepsy Behav Rep ; 15: 100436, 2021.
Article in English | MEDLINE | ID: mdl-33688630

ABSTRACT

Neurological dysfunction has been noted in up to 36% of patients hospitalized with COVID-19, and a variety of mechanisms of neurological injury are possible. Here we report the rapid development of PRES and acute seizures in a patient with COVID-19 infection and sickle cell disease. The combination of COVID and sickle cell disease may raise the risk of PRES and could contribute to the higher mortality rate of COVID in patients with sickle cell disease.

18.
Clin Neurophysiol ; 132(1): 80-93, 2021 01.
Article in English | MEDLINE | ID: mdl-33360179

ABSTRACT

OBJECTIVE: To describe the spatio-temporal dynamics and interactions during linguistic and memory tasks. METHODS: Event-related electrocorticographic (ECoG) spectral patterns obtained during cognitive tasks from 26 epilepsy patients (aged: 9-60 y) were analyzed in order to examine the spatio-temporal patterns of activation of cortical language areas. ECoGs (1024 Hz/channel) were recorded from 1567 subdural electrodes and 510 depth electrodes chronically implanted over or within the frontal, parietal, occipital and/or temporal lobes as part of their surgical work-up for intractable seizures. Six language/memory tasks were performed, which required responding verbally to auditory or visual word stimuli. Detailed analysis of electrode locations allowed combining results across patients. RESULTS: Transient increases in induced ECoG gamma power (70-100 Hz) were observed in response to hearing words (central superior temporal gyrus), reading text and naming pictures (occipital and fusiform cortex) and speaking (pre-central, post-central and sub-central cortex). CONCLUSIONS: Between these activations there was widespread spatial divergence followed by convergence of gamma activity that reliably identified cortical areas associated with task-specific processes. SIGNIFICANCE: The combined dataset supports the concept of functionally-specific locally parallel language networks that are widely distributed, partially interacting in succession to serve the cognitive and behavioral demands of the tasks.


Subject(s)
Cerebral Cortex/physiology , Language , Nerve Net/physiology , Adolescent , Adult , Brain Mapping , Cerebral Cortex/diagnostic imaging , Child , Electrocorticography , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Young Adult
20.
Clin Neurophysiol ; 131(12): 2910-2911, 2020 12.
Article in English | MEDLINE | ID: mdl-33023819
SELECTION OF CITATIONS
SEARCH DETAIL
...