Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Bioengineering (Basel) ; 9(9)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36135016

ABSTRACT

Allyl isothiocyanate (AITC) is a phytochemical that is abundantly present in cruciferous vegetables of the Brassicaceae family, such as cabbage, broccoli, mustard, wasabi, and cauliflower. The pungent taste of these vegetables is mainly due to the content of AITC present in these vegetables. AITC is stored stably in the plant as its precursor sinigrin (a type of glucosinolate), which is physically separated from myrosin cells containing myrosinase. Upon tissue disruption, myrosinase gets released and hydrolyzes the sinigrin to produce AITC and by-products. AITC is an organosulfur compound, both an irritant and toxic, but it carries pharmacological properties, including anticancer, antibacterial, antifungal, and anti-inflammatory activities. Despite the promising anticancer effectiveness of AITC, its clinical application still possesses challenges due to several factors, i.e., low aqueous solubility, instability, and low bioavailability. In this review, the anticancer activity of AITC against several cancer models is summarized from the literature. Although the mechanism of action is still not fully understood, several pathways have been identified; these are discussed in this review. Not much attention has been given to the delivery of AITC, which hinders its clinical application. However, the few studies that have demonstrated the use of nanotechnology to facilitate the delivery of AITC are addressed.

2.
Pharmaceutics ; 14(1)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35057038

ABSTRACT

Sinigrin is present in significant amounts in cruciferous vegetables. Epidemiological studies suggest that the consumption of such vegetables decreases the risk of cancer, and the effect is attributed mainly to allyl isothiocyanate (AITC), a hydrolysis product of sinigrin catalyzed by myrosinase. Anticancer activity of AITC has been previously investigated for several cancer models, but less attention was paid to delivering AITC on the target site. In this study, the gene sequences of core streptavidin (coreSA) and myrosinase (MYR) were cloned in a pET-30a(+) plasmid and transformed into BL21(DE3) E. coli competent cells. The MYR-coreSA chimeric protein was expressed and purified using immobilized metal affinity chromatography and further characterized by gel electrophoresis, Western blot, and enzyme activity assay. The purified MYR-coreSA chimeric protein was tethered on the outer membrane of biotinylated adenocarcinoma A549 cells and then treated with various concentrations of sinigrin. Our results showed that 20 µM of sinigrin inhibited the growth of A549 cells tethered with myrosinase by ~60% in 48 h. Furthermore, the levels of treated cells undertaken apoptosis were determined by Caspase-3/7 activation and Annexin-V. In summary, sinigrin harnessed like a prodrug catalyzed by myrosinase to the production of AITC, which induced cell apoptosis and arrested the growth of lung cancer cells.

3.
J Mater Chem B ; 10(1): 64-77, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34846059

ABSTRACT

Many viral vectors, which are effective when administrated in situ, lack efficacy when delivered intravenously. The key reason for this is the rapid clearance of the viruses from the blood circulation via the immune system before they reach target sites. Therefore, avoiding their clearance by the immune system is essential. In this study, lentiviral vectors were tethered with the ectodomain of self-marker protein CD47 to suppress phagocytosis via interacting with SIRPα on the outer membrane of macrophage cells. CD47 ectodomain and core-streptavidin fusion gene (CD47ED-coreSA) was constructed into pET-30a(+) plasmid and transformed into Lemo21 (DE3) competent E. coli cells. The expressed CD47ED-coreSA chimeric protein was purified by cobalt-nitrilotriacetate affinity column and characterized by SDS-PAGE and western blot. The purified chimeric protein was anchored on biotinylated lentivirus via biotin-streptavidin binding. The CD47ED-capped lentiviruses encoding GFP were used to infect J774A.1 macrophage cells to assess the impact on phagocytosis. Our results showed that the overexpressed CD47ED-coreSA chimeric protein was purified and bound on the surface of biotinylated lentivirus which was confirmed via immunoblotting assay. The process to produce biotinylated lentivirus did not affect native viral infectivity. It was shown that the level of GFP expression in J774A.1 macrophages transduced with CD47ED-lentiviruses was threefold lower in comparison to control lentiviruses, indicating an antiphagocytic effect triggered by the interaction of CD47ED and SIRPα. Through the test of blocking antibodies against CD47ED and/or SIRPα, it was confirmed that the phagocytosis inhibition was mediated through the CD47ED-SIRPα axis signaling. In conclusion, surface immobilization of CD47ED on lentiviral vectors inhibits their phagocytosis by macrophages. The chimeric protein of CD47 ectodomain and core-streptavidin is effective in mediating the surface binding and endowing the lentiviral nanoparticles with the antiphagocytic property.


Subject(s)
Antigens, Differentiation/immunology , CD47 Antigen/immunology , Lentivirus/immunology , Receptors, Immunologic/immunology , Animals , Cell Line , Cells, Cultured , Humans , Materials Testing , Mice , Particle Size , Phagocytosis/immunology
4.
RSC Adv ; 11(3): 1394-1403, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-35424143

ABSTRACT

Many tumors express thymidine phosphorylase (TYMP) with various levels, however due to tumor heterogeneity, the amount of TYMP is usually not enough to convert prodrug doxifluridine (5'-DFUR) to toxic drug 5-fluorouracil (5-FU). Since human mesenchymal stem cells (hMSCs) have unique features of tumor-tropism and low immunogenicity, the purpose of this study is to use mesenchymal stem cells as carriers to deliver TYMP to cancer cells and then trigger their death by administrating doxifluridine. First, the TYMP gene sequence and core streptavidin (core SA) were constructed into pET-30a(+) plasmid. After bacterial transformation and colony screening, TYMP-SA fusion protein was expressed by IPTG induction and purified by immobilized metal affinity chromatography and characterized by SDS-PAGE and western blot with a clear band at 75 kDa. The characterized TYMP-SA was further anchored on the cell membrane of biotinylated hMSCs via biotin-streptavidin binding. hMSCs anchored with TYMP-SA were then co-cultured with adenocarcinoma A549 cells (with different ratios) and treated with 100 µM prodrug doxifluridine over the course of four days. Our results showed that a 2 : 1 ratio led to the eradication of A549 cells at the end of the experiment with less than 5% confluency, in comparison with the 1 : 1 and 1 : 2 ratios which still had about 13% and 20% confluency respectively. In conclusion, harnessing hMSCs as cell carriers for the delivery of TYMP enzyme to cancer cells could lead to significant cell death post-treatment of the prodrug doxifluridine.

5.
Methods Protoc ; 3(4)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271819

ABSTRACT

The limited amount of fusion protein transported into cytosol milieu has made it challenging to obtain a sufficient amount for further applications. To avoid the laborious and expensive task, T7 promoter-driving pET-30a(+) coding for chimeric gene of thymidine phosphorylase and core streptavidin as a model system was constructed and transformed into a variety of E. coli strains with T7 expression system. Our results demonstrated that the pET-30a(+)-TP-coreSA/Lemo21(DE3) system is able to provide efficient expression of soluble TP-coreSA fusion protein for purification. Moreover, the eluted TP-coreSA fusion protein tethered on biotinylated A549 carcinoma cells could effectively eliminate these malignant cells after administrating prodrug 5'-DFUR.

6.
Biosensors (Basel) ; 10(6)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481598

ABSTRACT

Wearable technology and mobile healthcare systems are both increasingly popular solutions to traditional healthcare due to their ease of implementation and cost-effectiveness for remote health monitoring. Recent advances in research, especially the miniaturization of sensors, have significantly contributed to commercializing the wearable technology. Most of the traditional commercially available sensors are either mechanical or optical, but nowadays transdermal microneedles are also being used for micro-sensing such as continuous glucose monitoring. However, there remain certain challenges that need to be addressed before the possibility of large-scale deployment. The biggest challenge faced by all these wearable sensors is our skin, which has an inherent property to resist and protect the body from the outside world. On the other hand, biosensing is not possible without overcoming this resistance. Consequently, understanding the skin structure and its response to different types of sensing is necessary to remove the scientific barriers that are hindering our ability to design more efficient and robust skin sensors. In this article, we review research reports related to three different biosensing modalities that are commonly used along with the challenges faced in their implementation for detection. We believe this review will be of significant use to researchers looking to solve existing problems within the ongoing research in wearable sensors.


Subject(s)
Biosensing Techniques , Blood Glucose Self-Monitoring , Blood Glucose/analysis , Skin/chemistry , Wearable Electronic Devices , Humans
SELECTION OF CITATIONS
SEARCH DETAIL