Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Graph Model ; 131: 108813, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38885553

ABSTRACT

Despite the waning threat of the COVID-19 pandemic, its detrimental impact on global health persists. Regardless of natural immunity or immunity obtained through vaccination, emerging variants of the virus continue to undergo mutations and propagate globally. The persistent mutations in SARS-CoV-2, along with the subsequent formation of recombinant sub-variants has become a challenge for researchers and health professionals, raising concerns about the efficacy of current vaccines. Gaining a better understanding of the biochemical interactions between the Spike Protein (RBD) of SARS-CoV-2 variants and the human ACE2 receptor can prove to be beneficial in designing and developing antiviral therapeutics that are equally effective against all strains and emerging variants. Our objective in this study was to investigate the interfacial binding pattern of the SARS-CoV-2 RBD-ACE2 complex of the Wild Type (WT), Omicron, and the Omicron recombinant sub-variant XBB.1.16. We aimed to examine the atomic level factors and observe how mutations influence the interaction between the virus and its host using Molecular Dynamics simulation, MM/GBSA energy calculations, and Principal Component Analysis. Our findings reveal a higher degree of structural deviation and flexibility in XBB.1.16 compared to WT and Omicron. PCA indicated a wider cluster and significant flexibility in the movements of XBB.1.16 which can also be observed in free energy landscapes, while the normal mode analysis revealed converging motions within the RBD-ACE2 complexes which can facilitate the interaction between them. A pattern of decreased binding affinity was observed in case of XBB.1.16 when compared to the WT and Omicron. These observed deviations in XBB.1.16 when compared to its parent lineage Omicron, and WT can be attributed to the mutations specific to it. Collectively, these results enhance our understanding of the impact of mutations on the interaction between this strain and the host, taking us one step closer to designing effective antiviral therapeutics against the continually mutating strains.

2.
Sci Rep ; 14(1): 9398, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658642

ABSTRACT

Free Fatty Acid Receptor 4 (FFAR4), a G-protein-coupled receptor, is responsible for triggering intracellular signaling pathways that regulate various physiological processes. FFAR4 agonists are associated with enhancing insulin release and mitigating the atherogenic, obesogenic, pro-carcinogenic, and pro-diabetogenic effects, normally associated with the free fatty acids bound to FFAR4. In this research, molecular structure-based machine-learning techniques were employed to evaluate compounds as potential agonists for FFAR4. Molecular structures were encoded into bit arrays, serving as molecular fingerprints, which were subsequently analyzed using the Bayesian network algorithm to identify patterns for screening the data. The shortlisted hits obtained via machine learning protocols were further validated by Molecular Docking and via ADME and Toxicity predictions. The shortlisted compounds were then subjected to MD Simulations of the membrane-bound FFAR4-ligand complexes for 100 ns each. Molecular analyses, encompassing binding interactions, RMSD, RMSF, RoG, PCA, and FEL, were conducted to scrutinize the protein-ligand complexes at the inter-atomic level. The analyses revealed significant interactions of the shortlisted compounds with the crucial residues of FFAR4 previously documented. FFAR4 as part of the complexes demonstrated consistent RMSDs, ranging from 3.57 to 3.64, with minimal residue fluctuations 5.27 to 6.03 nm, suggesting stable complexes. The gyration values fluctuated between 22.8 to 23.5 nm, indicating structural compactness and orderliness across the studied systems. Additionally, distinct conformational motions were observed in each complex, with energy contours shifting to broader energy basins throughout the simulation, suggesting thermodynamically stable protein-ligand complexes. The two compounds CHEMBL2012662 and CHEMBL64616 are presented as potential FFAR4 agonists, based on these insights and in-depth analyses. Collectively, these findings advance our comprehension of FFAR4's functions and mechanisms, highlighting these compounds as potential FFAR4 agonists worthy of further exploration as innovative treatments for metabolic and immune-related conditions.


Subject(s)
Machine Learning , Molecular Docking Simulation , Molecular Dynamics Simulation , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/chemistry , Humans , Ligands , Protein Binding , Bayes Theorem , Binding Sites
3.
Eur J Pharm Sci ; 106: 198-211, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28591562

ABSTRACT

Patently, Protein-Protein Interactions (PPIs) lie at the core of significant biological functions and make the foundation of host-pathogen relationships. Hence, the current study is aimed to use computational biology techniques to predict host-pathogen Protein-Protein Interactions (HP-PPIs) between MRSA and Humans as potential drug targets ultimately proposing new possible inhibitors against them. As a matter of fact this study is based on the Interolog method which implies that homologous proteins retain their ability to interact. A distant homolog approach based on Interolog method was employed to speculate MRSA protein homologs in Humans using PSI-BLAST. In addition the protein interaction partners of these homologs as listed in Database of Interacting Proteins (DIP) were predicted to interact with MRSA as well. Moreover, a direct approach using BLAST was also applied so as to attain further confidence in the strategy. Consequently, the common HP-PPIs predicted by both approaches are suggested as potential drug targets (22%) whereas, the unique HP-PPIs estimated only through distant homolog approach are presented as novel drug targets (12%). Furthermore, the most repeated entry in our results was found to be MRSA Histone Deacetylase (HDAC) which was then modeled using SWISS-MODEL. Eventually, small molecules from ZINC, selected randomly, were docked against HDAC using Auto Dock and are suggested as potential binders (inhibitors) based on their energetic profiles. Thus the current study provides basis for further in-depth analysis of such data which not only include MRSA but other deadly pathogens as well.


Subject(s)
Bacterial Proteins/metabolism , Histone Deacetylases/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Humans , Molecular Docking Simulation , Protein Interaction Mapping , Proteome
SELECTION OF CITATIONS
SEARCH DETAIL
...