Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Mov Disord ; 17(1): 15-29, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37990381

ABSTRACT

Intracellular α-synuclein (α-syn) inclusions are a neuropathological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA), both of which are termed synucleinopathies. LBD is defined by Lewy bodies and Lewy neurites in neurons, while MSA displays glial cytoplasmic inclusions in oligodendrocytes. Pathological α-syn adopts an ordered filamentous structure with a 5-10 nm filament diameter, and this conformational change has been suggested to be involved in the disease onset and progression. Synucleinopathies also exhibit characteristic ultrastructural and biochemical properties of α-syn filaments, and α-syn strains with distinct conformations have been identified. Numerous experimental studies have supported the idea that pathological α-syn self-amplifies and spreads throughout the brain, during which processes the conformation of α-syn filaments may drive the disease specificity. In this review, we summarize the ultrastructural features and heterogeneity of α-syn filaments in the brains of patients with synucleinopathy and in experimental models of seeded α-syn aggregation.

2.
FASEB J ; 37(12): e23311, 2023 12.
Article in English | MEDLINE | ID: mdl-37962096

ABSTRACT

Aggregation of α-synuclein (α-syn) into amyloid is the pathological hallmark of several neurodegenerative disorders, including Parkinson disease, dementia with Lewy bodies, and multiple system atrophy. It is widely accepted that α-syn aggregation is associated with neurodegeneration, although the mechanisms are not yet fully understood. Therefore, the inhibition of α-syn aggregation is a potential therapeutic approach against these diseases. This study used the photocatalyst for α-syn photo-oxygenation, which selectively adds oxygen atoms to fibrils. Our findings demonstrate that photo-oxygenation using this photocatalyst successfully inhibits α-syn aggregation, particularly by reducing its seeding ability. Notably, we also discovered that photo-oxygenation of the histidine at the 50th residue in α-syn aggregates is responsible for the inhibitory effect. These findings indicate that photo-oxygenation of the histidine residue in α-syn is a potential therapeutic strategy for synucleinopathies.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Histidine/analysis , Parkinson Disease/therapy , Parkinson Disease/pathology , Lewy Bodies/pathology , Respiratory Physiological Phenomena
3.
Brain ; 146(12): 4988-4999, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37904205

ABSTRACT

Pathological tau accumulates in the brain in tauopathies such as Alzheimer's disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration, and forms amyloid-like filaments incorporating various post-translational modifications (PTMs). Cryo-electron microscopic (cryo-EM) studies have demonstrated that tau filaments extracted from tauopathy brains are characteristic of the disease and share a common fold(s) in the same disease group. Furthermore, the tau PTM profile changes during tau pathology formation and disease progression, and disease-specific PTMs are detected in and around the filament core. In addition, templated seeding has been suggested to trigger pathological tau amplification and spreading in vitro and in vivo, although the molecular mechanisms are not fully understood. Recently, we reported that the cryo-EM structures of tau protofilaments in SH-SY5Y cells seeded with patient-derived tau filaments show a core structure(s) resembling that of the original seeds. Here, we investigated PTMs of tau filaments accumulated in the seeded cells by liquid chromatography/tandem mass spectrometry and compared them with the PTMs of patient-derived tau filaments. Examination of insoluble tau extracted from SH-SY5Y cells showed that numerous phosphorylation, deamidation and oxidation sites detected in the fuzzy coat in the original seeds were well reproduced in SH-SY5Y cells. Moreover, templated tau filament formation preceded both truncation of the N-/C-terminals of tau and PTMs in and around the filament core, indicating these PTMs may predominantly be introduced after the degradation of the fuzzy coat.


Subject(s)
Alzheimer Disease , Neuroblastoma , Tauopathies , Humans , Alzheimer Disease/pathology , Brain/pathology , Neuroblastoma/metabolism , Neuroblastoma/pathology , Protein Processing, Post-Translational , tau Proteins/metabolism , Tauopathies/pathology
4.
FEBS Open Bio ; 13(8): 1394-1404, 2023 08.
Article in English | MEDLINE | ID: mdl-37337995

ABSTRACT

The formation of amyloid filaments through templated seeding is believed to underlie the propagation of pathology in most human neurodegenerative diseases. A widely used model system to study this process is to seed amyloid filament formation in cultured cells using human brain extracts. Here, we report the electron cryo-microscopy structures of tau filaments from  undifferentiated seeded SH-SY5Y cells that transiently expressed N-terminally HA-tagged 1N3R or 1N4R human tau, using brain extracts from individuals with Alzheimer's disease or corticobasal degeneration. Although the resulting filament structures differed from those of the brain seeds, some degrees of structural templating were observed. Studying templated seeding in cultured cells, and determining the structures of the resulting filaments, can thus provide insights into the cellular aspects underlying neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Corticobasal Degeneration , Neuroblastoma , Humans , Alzheimer Disease/pathology , tau Proteins/metabolism , Cryoelectron Microscopy , Neuroblastoma/pathology , Brain/metabolism , Amyloid
5.
Brain Nerve ; 74(7): 919-925, 2022 Jul.
Article in Japanese | MEDLINE | ID: mdl-35860941

ABSTRACT

Pathological tau protein accumulated in the brain of patients with tauopathies undergoes structural changes into amyloid-like filaments and forms the intracellular deposits that characterize the disease. Structural and biochemical classification of pathogenic tau extracted from patients' brains supports the hypothesis that structural polymorphisms of tau filaments occur in the brain. Additionally, disease-specific tau pathologies are recapitulated in in vitro and in vivo experimental models that mimic tau aggregation and dissemination and indicate that conformation of tau filaments is a key contributor to the pathological diversity in tauopathy. In this review, we describe the structural and biochemical features of pathological tau extracted from the brain of patients with tauopathies and discuss the possible mechanisms underlying amplification and dissemination of pathological tau in the brain.


Subject(s)
Tauopathies , tau Proteins , Brain/pathology , Humans , Tauopathies/genetics , Tauopathies/pathology , tau Proteins/genetics , tau Proteins/metabolism
7.
Acta Neuropathol ; 143(6): 613-640, 2022 06.
Article in English | MEDLINE | ID: mdl-35513543

ABSTRACT

Intracellular accumulation of abnormal proteins with conformational changes is the defining neuropathological feature of neurodegenerative diseases. The pathogenic proteins that accumulate in patients' brains adopt an amyloid-like fibrous structure and exhibit various ultrastructural features. The biochemical analysis of pathogenic proteins in sarkosyl-insoluble fractions extracted from patients' brains also shows disease-specific features. Intriguingly, these ultrastructural and biochemical features are common within the same disease group. These differences among the pathogenic proteins extracted from patients' brains have important implications for definitive diagnosis of the disease, and also suggest the existence of pathogenic protein strains that contribute to the heterogeneity of pathogenesis in neurodegenerative diseases. Recent experimental evidence has shown that prion-like propagation of these pathogenic proteins from host cells to recipient cells underlies the onset and progression of neurodegenerative diseases. The reproduction of the pathological features that characterize each disease in cellular and animal models of prion-like propagation also implies that the structural differences in the pathogenic proteins are inherited in a prion-like manner. In this review, we summarize the ultrastructural and biochemical features of pathogenic proteins extracted from the brains of patients with neurodegenerative diseases that accumulate abnormal forms of tau, α-synuclein, and TDP-43, and we discuss how these disease-specific properties are maintained in the brain, based on recent experimental insights.


Subject(s)
Neurodegenerative Diseases , Prions , Animals , Brain/pathology , DNA-Binding Proteins/metabolism , Humans , Neurodegenerative Diseases/pathology , Prions/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism
8.
Nature ; 605(7909): 310-314, 2022 05.
Article in English | MEDLINE | ID: mdl-35344985

ABSTRACT

Many age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-ß, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-ß amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.


Subject(s)
Aging , Amyloid , Amyloidosis , Brain , Membrane Proteins , Nerve Tissue Proteins , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Amyloidosis/metabolism , Brain/metabolism , Humans , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Plaque, Amyloid/metabolism , Tauopathies/metabolism , tau Proteins/metabolism
9.
Nature ; 598(7880): 359-363, 2021 10.
Article in English | MEDLINE | ID: mdl-34588692

ABSTRACT

The ordered assembly of tau protein into filaments characterizes several neurodegenerative diseases, which are called tauopathies. It was previously reported that, by cryo-electron microscopy, the structures of tau filaments from Alzheimer's disease1,2, Pick's disease3, chronic traumatic encephalopathy4 and corticobasal degeneration5 are distinct. Here we show that the structures of tau filaments from progressive supranuclear palsy (PSP) define a new three-layered fold. Moreover, the structures of tau filaments from globular glial tauopathy are similar to those from PSP. The tau filament fold of argyrophilic grain disease (AGD) differs, instead resembling the four-layered fold of corticobasal degeneration. The AGD fold is also observed in ageing-related tau astrogliopathy. Tau protofilament structures from inherited cases of mutations at positions +3 or +16 in intron 10 of MAPT (the microtubule-associated protein tau gene) are also identical to those from AGD, suggesting that relative overproduction of four-repeat tau can give rise to the AGD fold. Finally, the structures of tau filaments from cases of familial British dementia and familial Danish dementia are the same as those from cases of Alzheimer's disease and primary age-related tauopathy. These findings suggest a hierarchical classification of tauopathies on the basis of their filament folds, which complements clinical diagnosis and neuropathology and also allows the identification of new entities-as we show for a case diagnosed as PSP, but with filament structures that are intermediate between those of globular glial tauopathy and PSP.


Subject(s)
Cryoelectron Microscopy , Protein Folding , Tauopathies/classification , tau Proteins/chemistry , tau Proteins/ultrastructure , Aged , Aged, 80 and over , Amino Acid Sequence , Dementia/genetics , Denmark , Female , Humans , Introns/genetics , Male , Middle Aged , Models, Molecular , Mutation , Protein Isoforms/chemistry , Protein Isoforms/ultrastructure , Supranuclear Palsy, Progressive , Tauopathies/pathology , United Kingdom
10.
Methods Mol Biol ; 2322: 17-25, 2021.
Article in English | MEDLINE | ID: mdl-34043188

ABSTRACT

α-Synuclein (α-syn) is a major component of abnormal protein deposits observed in the brains of patients with synucleinopathies, including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy (MSA). The synaptic protein α-syn is water-soluble under normal physiological conditions, but in these patients' brains, we see accumulation of insoluble amyloid-like α-syn fibrils with prion-like properties. Intracerebral accumulation of these fibrils is correlated with disease onset and progression. Recombinant α-syn protein also forms amyloid-like fibrils that are structurally akin to those extracted from patients' brains. Recent cryo-electron microscopic studies have identified the core structures of synthetic α-syn fibrils and α-syn fibrils extracted from the brains of patients with MSA at the atomic level. In this chapter, we describe negative staining and immunoelectron microscopy protocols for ultrastructural characterization of synthetic α-syn fibrils and pathological α-syn fibrils.


Subject(s)
Amyloid/metabolism , Microscopy, Electron/methods , alpha-Synuclein/metabolism , Brain/metabolism , Disease Progression , Humans , Microscopy, Immunoelectron/methods , Multiple System Atrophy/metabolism , Parkinson Disease/metabolism , Recombinant Proteins/metabolism
11.
Brain ; 144(8): 2333-2348, 2021 09 04.
Article in English | MEDLINE | ID: mdl-33693528

ABSTRACT

Tauopathies are a subset of neurodegenerative diseases characterized by abnormal tau inclusions. Specifically, three-repeat tau and four-repeat tau in Alzheimer's disease, three-repeat tau in Pick's disease (PiD) and four-repeat tau in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) form amyloid-like fibrous structures that accumulate in neurons and/or glial cells. Amplification and cell-to-cell transmission of abnormal tau based on the prion hypothesis are believed to explain the onset and progression of tauopathies. Recent studies support not only the self-propagation of abnormal tau, but also the presence of conformationally distinct tau aggregates, namely tau strains. Cryogenic electron microscopy analyses of patient-derived tau filaments have revealed disease-specific ordered tau structures. However, it remains unclear whether the ultrastructural and biochemical properties of tau strains are inherited during the amplification of abnormal tau in the brain. In this study, we investigated template-dependent amplification of tau aggregates using a cellular model of seeded aggregation. Tau strains extracted from human tauopathies caused strain-dependent accumulation of insoluble filamentous tau in SH-SY5Y cells. The seeding activity towards full-length four-repeat tau substrate was highest in CBD-tau seeds, followed by PSP-tau and Alzheimer's disease (AD)-tau seeds, while AD-tau seeds showed higher seeding activity than PiD-tau seeds towards three-repeat tau substrate. Abnormal tau amplified in cells inherited the ultrastructural and biochemical properties of the original seeds. These results strongly suggest that the structural differences of patient-derived tau strains underlie the diversity of tauopathies, and that seeded aggregation and filament formation mimicking the pathogenesis of sporadic tauopathy can be reproduced in cultured cells. Our results indicate that the disease-specific conformation of tau aggregates determines the tau isoform substrate that is recruited for templated amplification, and also influences the prion-like seeding activity.


Subject(s)
Brain/metabolism , Protein Aggregation, Pathological/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Brain/pathology , Cell Line, Tumor , Humans , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Neurons/metabolism , Neurons/pathology , Protein Aggregation, Pathological/pathology , Tauopathies/pathology
12.
FEBS Open Bio ; 11(4): 999-1013, 2021 04.
Article in English | MEDLINE | ID: mdl-33548114

ABSTRACT

The propagation of conformational strains by templated seeding is central to the prion concept. Seeded assembly of α-synuclein into filaments is believed to underlie the prion-like spreading of protein inclusions in a number of human neurodegenerative diseases, including Parkinson's disease, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). We previously determined the atomic structures of α-synuclein filaments from the putamen of five individuals with MSA. Here, we used filament preparations from three of these brains for the in vitro seeded assembly of recombinant human α-synuclein. We find that the structures of the seeded assemblies differ from those of the seeds, suggesting that additional, as yet unknown, factors play a role in the propagation of the seeds. Identification of these factors will be essential for understanding the prion-like spreading of α-synuclein proteinopathies.


Subject(s)
Amyloid/chemistry , Molecular Structure , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Protein Conformation , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Amyloid/metabolism , Amyloid/ultrastructure , Brain/metabolism , Brain/pathology , Humans , Multiple System Atrophy/etiology , Protein Aggregates , Protein Aggregation, Pathological , Protein Binding
13.
Nature ; 585(7825): 464-469, 2020 09.
Article in English | MEDLINE | ID: mdl-32461689

ABSTRACT

Synucleinopathies, which include multiple system atrophy (MSA), Parkinson's disease, Parkinson's disease with dementia and dementia with Lewy bodies (DLB), are human neurodegenerative diseases1. Existing treatments are at best symptomatic. These diseases are characterized by the presence of, and believed to be caused by the formation of, filamentous inclusions of α-synuclein in brain cells2,3. However, the structures of α-synuclein filaments from the human brain are unknown. Here, using cryo-electron microscopy, we show that α-synuclein inclusions from the brains of individuals with MSA are made of two types of filament, each of which consists of two different protofilaments. In each type of filament, non-proteinaceous molecules are present at the interface of the two protofilaments. Using two-dimensional class averaging, we show that α-synuclein filaments from the brains of individuals with MSA differ from those of individuals with DLB, which suggests that distinct conformers or strains characterize specific synucleinopathies. As is the case with tau assemblies4-9, the structures of α-synuclein filaments extracted from the brains of individuals with MSA differ from those formed in vitro using recombinant proteins, which has implications for understanding the mechanisms of aggregate propagation and neurodegeneration in the human brain. These findings have diagnostic and potential therapeutic relevance, especially because of the unmet clinical need to be able to image filamentous α-synuclein inclusions in the human brain.


Subject(s)
Brain/metabolism , Cryoelectron Microscopy , Inclusion Bodies/chemistry , Inclusion Bodies/ultrastructure , Multiple System Atrophy/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/ultrastructure , Brain/pathology , Brain/ultrastructure , Humans , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Models, Molecular , Multiple System Atrophy/diagnosis , Multiple System Atrophy/pathology , Multiple System Atrophy/therapy , Protein Folding , Putamen/metabolism , Putamen/ultrastructure , alpha-Synuclein/metabolism
14.
Nature ; 580(7802): 283-287, 2020 04.
Article in English | MEDLINE | ID: mdl-32050258

ABSTRACT

Corticobasal degeneration (CBD) is a neurodegenerative tauopathy-a class of disorders in which the tau protein forms insoluble inclusions in the brain-that is characterized by motor and cognitive disturbances1-3. The H1 haplotype of MAPT (the tau gene) is present in cases of CBD at a higher frequency than in controls4,5, and genome-wide association studies have identified additional risk factors6. By histology, astrocytic plaques are diagnostic of CBD7,8; by SDS-PAGE, so too are detergent-insoluble, 37 kDa fragments of tau9. Like progressive supranuclear palsy, globular glial tauopathy and argyrophilic grain disease10, CBD is characterized by abundant filamentous tau inclusions that are made of isoforms with four microtubule-binding repeats11-15. This distinguishes such '4R' tauopathies from Pick's disease (the filaments of which are made of three-repeat (3R) tau isoforms) and from Alzheimer's disease and chronic traumatic encephalopathy (CTE) (in which both 3R and 4R isoforms are found in the filaments)16. Here we use cryo-electron microscopy to analyse the structures of tau filaments extracted from the brains of three individuals with CBD. These filaments were identical between cases, but distinct from those seen in Alzheimer's disease, Pick's disease and CTE17-19. The core of a CBD filament comprises residues lysine 274 to glutamate 380 of tau, spanning the last residue of the R1 repeat, the whole of the R2, R3 and R4 repeats, and 12 amino acids after R4. The core adopts a previously unseen four-layered fold, which encloses a large nonproteinaceous density. This density is surrounded by the side chains of lysine residues 290 and 294 from R2 and lysine 370 from the sequence after R4.


Subject(s)
Basal Ganglia Diseases/pathology , Cerebral Cortex/pathology , Cryoelectron Microscopy , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/chemistry , tau Proteins/ultrastructure , Aged , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amino Acid Sequence , Basal Ganglia Diseases/metabolism , Brain Chemistry , Cerebral Cortex/metabolism , Chronic Traumatic Encephalopathy/metabolism , Chronic Traumatic Encephalopathy/pathology , Female , Frontal Lobe/metabolism , Frontal Lobe/pathology , Humans , Male , Middle Aged , Models, Molecular , Pick Disease of the Brain/metabolism , Pick Disease of the Brain/pathology , Protein Folding , tau Proteins/metabolism
15.
Prog Mol Biol Transl Sci ; 168: 323-348, 2019.
Article in English | MEDLINE | ID: mdl-31699325

ABSTRACT

Prions are defined as proteinaceous infectious particles that do not contain nucleic acids. Neuropathological investigations of post-mortem brains and recent studies of experimental transmission have suggested that amyloid-like abnormal protein aggregates, which are the defining feature of many neurodegenerative diseases, behave like prions and propagate throughout the brain. This prion-like propagation may be the underlying mechanism of onset and progression of neurodegenerative diseases, although the precise molecular mechanisms involved remain unclear. However, in vitro and in vivo experimental models of prion-like propagation using pathogenic protein seeds are well established and are extremely valuable for the exploration and evaluation of novel drugs and therapies for neurodegenerative diseases for which there is no effective treatment. In this chapter, we introduce the experimental models of prion-like propagation of α-synuclein, which is accumulated in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, and we describe their applications for the development of new diagnostic and therapeutic modalities. We also introduce the concept of "α-syn strains," which may underlie the pathological and clinical diversity of α-synucleinopathies.


Subject(s)
Neurodegenerative Diseases/etiology , Prions , Synucleinopathies/physiopathology , alpha-Synuclein/metabolism , Animals , Disease Progression , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology
16.
Front Mol Neurosci ; 11: 273, 2018.
Article in English | MEDLINE | ID: mdl-30233307

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) respond to glutamate to allow the influx of calcium ions and the signaling to the mitogen-activated protein kinase (MAPK) cascade. Both MAPK- and Ca2+-mediated events are important for both neurotransmission and neural cell function and fate. Using a heterologous expression system, we demonstrate that NMDAR may interact with the EF-hand calcium-binding proteins calmodulin, calneuron-1, and NCS1 but not with caldendrin. NMDARs were present in primary cultures of both neurons and microglia from cortex and hippocampus. Calmodulin in microglia, and calmodulin and NCS1 in neurons, are necessary for NMDA-induced MAP kinase pathway activation. Remarkably, signaling to the MAP kinase pathway was blunted in primary cultures of cortical and hippocampal neurons and microglia from wild-type animals by proteins involved in neurodegenerative diseases: α-synuclein, Tau, and p-Tau. A similar blockade by pathogenic proteins was found using samples from the APPSw,Ind transgenic Alzheimer's disease model. Interestingly, a very marked increase in NMDAR-NCS1 complexes was identified in neurons and a marked increase of both NMDAR-NCS1 and NMDAR-CaM complexes was identified in microglia from the transgenic mice. The results show that α-synuclein, Tau, and p-Tau disrupt the signaling of NMDAR to the MAPK pathway and that calcium sensors are important for NMDAR function both in neurons and microglia. Finally, it should be noted that the expression of receptor-calcium sensor complexes, specially those involving NCS1, is altered in neural cells from APPSw,Ind mouse embryos/pups.

17.
Acta Neuropathol Commun ; 6(1): 29, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29669601

ABSTRACT

The concept that abnormal protein aggregates show prion-like propagation between cells has been considered to explain the onset and progression of many neurodegenerative diseases. Indeed, both synthetic amyloid-like fibrils and pathogenic proteins extracted from patients' brains induce self-templated amplification and cell-to-cell transmission in vitro and in vivo. However, it is unclear whether exposure to exogenous prion-like proteins can potentially cause these diseases in humans. Here, we investigated in detail the prion-like seeding activities of several kinds of pathogenic α-synuclein (α-syn), including synthetic fibrils and detergent-insoluble fractions extracted from brains of patients with α-synucleinopathies. Exposure to synthetic α-syn fibrils at concentrations above 100 pg/mL caused seeded aggregation of α-syn in SH-SY5Y cells, and seeded aggregation was also observed in C57BL/6 J mice after intracerebral inoculation of at least 0.1 µg/animal. α-Syn aggregates extracted from brains of multiple system atrophy (MSA) patients showed higher seeding activity than those extracted from patients with dementia with Lewy bodies (DLB), and their potency was similar to that of synthetic α-syn fibrils. We also examined the effects of various methods that have been reported to inactivate abnormal prion proteins (PrPSc), including autoclaving at various temperatures, exposure to sodium dodecyl sulfate (SDS), and combined treatments. The combination of autoclaving and 1% SDS substantially reduced the seeding activities of synthetic α-syn fibrils and α-syn aggregates extracted from MSA brains. However, single treatment with 1% SDS or generally used sterilization conditions proved insufficient to prevent accumulation of pathological α-syn. In conclusion, α-syn aggregates derived from MSA patients showed a potent prion-like seeding activity, which could be efficiently reduced by combined use of SDS and autoclaving.


Subject(s)
Brain/metabolism , Prion Diseases/pathology , Prion Diseases/physiopathology , alpha-Synuclein/metabolism , alpha-Synuclein/toxicity , Amyloid , Animals , Brain/drug effects , Brain/ultrastructure , Cell Line, Tumor , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Humans , Lewy Body Disease/pathology , Mice , Mice, Inbred C57BL , Microscopy, Immunoelectron , Multiple System Atrophy/pathology , Neuroblastoma/pathology , Peptide Fragments/pharmacology , Prion Diseases/metabolism , Transfection , alpha-Synuclein/genetics , alpha-Synuclein/ultrastructure
18.
Proc Natl Acad Sci U S A ; 114(45): E9645-E9654, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29042514

ABSTRACT

Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by pathology of accumulated amyloid ß (Aß) and phosphorylated tau proteins in the brain. Postmortem degradation and cellular complexity within the brain have limited approaches to molecularly define the causal relationship between pathological features and neuronal dysfunction in AD. To overcome these limitations, we analyzed the neuron-specific DNA methylome of postmortem brain samples from AD patients, which allowed differentially hypomethylated region of the BRCA1 promoter to be identified. Expression of BRCA1 was significantly up-regulated in AD brains, consistent with its hypomethylation. BRCA1 protein levels were also elevated in response to DNA damage induced by Aß. BRCA1 became mislocalized to the cytoplasm and highly insoluble in a tau-dependent manner, resulting in DNA fragmentation in both in vitro cellular and in vivo mouse models. BRCA1 dysfunction under Aß burden is consistent with concomitant deterioration of genomic integrity and synaptic plasticity. The Brca1 promoter region of AD model mice brain was similarly hypomethylated, indicating an epigenetic mechanism underlying BRCA1 regulation in AD. Our results suggest deterioration of DNA integrity as a central contributing factor in AD pathogenesis. Moreover, these data demonstrate the technical feasibility of using neuron-specific DNA methylome analysis to facilitate discovery of etiological candidates in sporadic neurodegenerative diseases.


Subject(s)
Alzheimer Disease/genetics , BRCA1 Protein/genetics , Epigenesis, Genetic/genetics , Neurons/metabolism , tau Proteins/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Brain/metabolism , DNA Damage/genetics , DNA Methylation/genetics , Disease Models, Animal , Humans , Neuronal Plasticity/genetics , Promoter Regions, Genetic/genetics , Signal Transduction/genetics , Up-Regulation/genetics
19.
Acta Neuropathol Commun ; 5(1): 12, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28148299

ABSTRACT

α-Synuclein is a defining, key component of Lewy bodies and Lewy neurites in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), as well as glial cytoplasmic inclusions in multiple system atrophy (MSA). The distribution and spreading of these pathologies are closely correlated with disease progression. Recent studies have revealed that intracerebral injection of synthetic α-synuclein fibrils or pathological α-synuclein prepared from DLB or MSA brains into wild-type or transgenic animal brains induced prion-like propagation of phosphorylated α-synuclein pathology. The common marmoset is a very small primate that is expected to be a useful model of human diseases. Here, we show that intracerebral injection of synthetic α-synuclein fibrils into adult wild-type marmoset brains (caudate nucleus and/or putamen) resulted in spreading of abundant α-synuclein pathologies, which were positive for various antibodies to α-synuclein, including phospho Ser129-specific antibody, anti-ubiquitin and anti-p62 antibodies, at three months after injection. Remarkably, robust Lewy body-like inclusions were formed in tyrosine hydroxylase (TH)-positive neurons in these marmosets, strongly suggesting the retrograde spreading of abnormal α-synuclein from striatum to substantia nigra. Moreover, a significant decrease in the numbers of TH-positive neurons was observed in the injection-side of the brain, where α-synuclein inclusions were deposited. Furthermore, most of the α-synuclein inclusions were positive for 1-fluoro-2,5-bis (3-carboxy-4-hydroxystyryl) benzene (FSB) and thioflavin-S, which are dyes widely used to visualize the presence of amyloid. Thus, injection of synthetic α-synuclein fibrils into brains of non-transgenic primates induced PD-like α-synuclein pathologies within only 3 months after injection. Finally, we provide evidence indicating that neurons with abnormal α-synuclein inclusions may be cleared by microglial cells. This is the first marmoset model for α-synuclein propagation. It should be helpful in studies to elucidate mechanisms of disease progression and in development and evaluation of disease-modifying drugs for α-synucleinopathies.


Subject(s)
Brain/metabolism , Brain/pathology , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , alpha-Synuclein/metabolism , Animals , Benzothiazoles , Callithrix , Female , Immunohistochemistry , Lewy Bodies/metabolism , Lewy Bodies/pathology , Microglia/metabolism , Microglia/pathology , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neurons/metabolism , Neurons/pathology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Recombinant Proteins/administration & dosage , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Thiazoles/metabolism , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/administration & dosage , alpha-Synuclein/genetics
20.
Brain Nerve ; 68(10): 1197-1204, 2016 Oct.
Article in Japanese | MEDLINE | ID: mdl-27703107

ABSTRACT

Intracellular abnormal protein deposits, such as tau, α-synuclein and TDP-43, are the hallmark of many neurodegenerative diseases, and the distributions of these pathological proteins are closely correlated with disease symptoms and progression. A growing body of evidence strongly suggests that these abnormal proteins have prion-like properties: they convert normal proteins into abnormal forms, self-propagate through neuronal networks, and then spread in the brain. This prion-like propagation of abnormal proteins may account for the diversity, selective degeneration and disease progression seen in neurodegenerative diseases, although the molecular mechanism remains uncertain the molecular details of this mechanism. This review describes recent studies on prion-like properties of abnormal proteins in vitro, in cells and in animal experimental models.


Subject(s)
Neurodegenerative Diseases/metabolism , Prions/metabolism , Animals , DNA-Binding Proteins/metabolism , Humans , Prion Proteins/chemistry , Prion Proteins/metabolism , Prions/chemistry , Protein Multimerization , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL