Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2401273, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958069

ABSTRACT

Acid-treated multi-walled carbon nanotube (MWCNT) covalently functionalized with cobalt triphenothiazine porphyrin (CoTriPTZ-OH) A3B type porphyrin, containing three phenothiazine moieties (represented as MWCNT-CoTriPTZ) is synthesized and characterized by various spectroscopic and microscopic techniques. The nanoconjugate, MWCNT-CoTriPTZ, exhibits a pair of distinct redox peaks due to the Co2+/Co3+ redox process in 0.1 M pH 7.0 phosphate buffer. Further, it electrocatalytically oxidizes hydrazine at a low overpotential with a high current. This property is advantageously utilized for the sensitive determination of hydrazine. The developed electrochemical sensor exhibits high sensitivity (0.99 µAµM-1cm-2), a low limit of detection (4.5 ppb), and a broad linear calibration range (0.1 µM to 3.0 mM) for the determination of hydrazine. Further, MWCNT-CoTriPTZ is exploited for hydrazine-assisted green hydrogen synthesis. The high efficiency of hydrazine oxidation is confirmed by the low onset potential (0.45 V (vs RHE)) and 0.60 V (vs RHE) at the current density of 10 mA.cm-2. MWCNT-CoTriPTZ displays a high current density (77.29 mA.cm-2) at 1.45 V (vs RHE).

2.
Langmuir ; 39(23): 8075-8082, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37264648

ABSTRACT

Recently, researchers are seeking alternatives to replace Pt-based oxygen reduction reaction (ORR) catalysts used in fuel cells due to their high cost and certain stability and selectivity issues. For this purpose, we have synthesized a nanoconjugate, cobalt(II) porphyrin (5,10,15-triphenyl-20-(4-aminophenyl)porphyrinatocobalt(II), CoTPP-NH2) covalently attached to the acid-functionalized multiwalled carbon nanotubes and characterized by various techniques including UV-vis spectroscopy, FTIR, TGA, FESEM, TEM, and Raman spectroscopy. The oxygen reduction performance of the nanoconjugate is checked in basic medium. The ORR onset potential of the nanoconjugate-modified electrode is nearly the same as that of the state-of-the-art platinum-carbon electrode and stable for more than 3000 CV cycles with a 20 mV difference in the onset potential before and after the 3000 CV cycles. The above extrapolations reveal that the nanoconjugate has efficient performance for the ORR in basic medium.

SELECTION OF CITATIONS
SEARCH DETAIL