Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14435, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37660204

ABSTRACT

The 15 January 2022 submarine eruption at Hunga volcano was the most explosive volcanic eruption in 140 years. It involved exceptional magma and seawater interaction throughout the entire submarine caldera collapse. The submarine volcanic jet breached the sea surface and formed a subaerial eruptive plume that transported volcanic ash, gas, sea salts and seawater up to ~ 57 km, reaching into the mesosphere. We document high concentrations of sea salts in tephra (volcanic ash) collected shortly after deposition. We also discuss the potential climatic consequences of large-scale injection of salts into the upper atmosphere during submarine eruptions. Sodium chloride in these volcanic plumes can reach extreme concentrations, and dehalogenation of chlorides and bromides poses the risk of long-term atmospheric and weather impact. Salt content in rapidly collected tephra samples may also be used as a proxy to estimate the water:magma ratio during eruption, with implications for quantification of fragmentation efficiency in submarine breaching events. The balance between salt loading into the atmosphere versus deposition in ash aggregates is a key factor in understanding the atmospheric and climatic consequences of submarine eruptions.

2.
Nat Geosci ; 7: 768-776, 2014.
Article in English | MEDLINE | ID: mdl-29263751

ABSTRACT

Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an approach to merge satellite data sets with the help of a chemistry-climate model nudged to observed meteorology. We use the models' water vapour as a transfer function between data sets that overcomes issues arising from instrument drift and short overlap periods. In the lower stratosphere, our water vapour record extends back to 1988 and water vapour concentrations largely follow tropical tropopause temperatures. Lower and mid-stratospheric long-term trends are negative, and the trends from Boulder are shown not to be globally representative. In the upper stratosphere, our record extends back to 1986 and shows positive long-term trends. The altitudinal differences in the trends are explained by methane oxidation together with a strengthened lower-stratospheric and a weakened upper-stratospheric circulation inferred by this analysis. Our results call into question previous estimates of surface radiative forcing based on presumed global long-term increases in water vapour concentrations in the lower stratosphere.

SELECTION OF CITATIONS
SEARCH DETAIL