Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Adv Healthc Mater ; : e2401199, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054675

ABSTRACT

The development of nanovaccines capable of eliciting tumor-specific immune responses holds significant promise for tumor immunotherapy. However, many nanovaccine designs rely heavily on incorporating multiple adjuvants and carriers, increasing the biological hazards associated with these additional components. Here, this work introduces novel flexible nanocapsules (OVAnano) designed to mimic extracellular vesicles, primarily using the ovalbumin antigen and minimal polyethylenimine adjuvant components. These results show that the biomimetic flexible structure of OVAnano facilitates enhanced antigen uptake by dendritic cells (DCs), leading to efficient antigen and adjuvant release into the cytosol via endosomal escape, and ultimately, successful antigen cross-presentation by DCs. Furthermore, OVAnano modulates the intracellular nuclear factor kappa-B (NF-κB) signaling pathway, promoting DC maturation. The highly purified antigens in OVAnano demonstrate remarkable antigen-specific immunogenicity, triggering strong antitumor immune responses mediated by DCs. Therapeutic tumor vaccination studies have also shown that OVAnano administration effectively suppresses tumor growth in mice by inducing immune responses from CD8+ and CD4+ T cells targeting specific antigens, reducing immunosuppression by regulatory T cells, and boosting the populations of effector memory T cells. These findings underscore that the simple yet potent strategy of employing minimal flexible nanocapsules markedly enhances DC-mediated antitumor immunotherapy, offering promising avenues for future clinical applications.

2.
J Mater Chem B ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016097

ABSTRACT

The dense extracellular matrix (ECM) in the tumor microenvironment forms an abnormal physical barrier, which impedes the delivery and penetration of nanomedicines and hinders their therapeutic efficacy. Herein, we synthesize matrix-degrading soft-nanocapsules composed of human serum albumin (HSA) and hyaluronidase (HAase) for overcoming the obstruction of ECM in the tumor microenvironment. The matrix-degrading human serum albumin/hyaluronidase soft-nanocapsules, referred to as HSA/HAase SNCs, possess a uniform diameter, inward hollow structure, and wrinkled morphology. In vitro biocompatibility results indicate that the HSA/HAase SNCs display no adverse effects on the viability of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs), and mouse breast cancer (4T1) cells and do not induce hemolysis towards red blood cells (RBCs). The HSA/HAase SNCs exhibit a 1.4-fold increase in tumor cellular uptake compared to the stiff-counterparts and enhanced penetration in 4T1-, mouse colon carcinoma 26- (CT26-), and mouse pancreatic cancer- (PanO2-) multicellular spheroids. Thanks to the advanced biological properties, a photodynamic platform prepared by loading Ce6 in the HSA/HAase SNCs (HSA/HAase@Ce6) shows improved reactive oxygen species production, a stronger killing effect for cancer cells, and deeper penetration in tumor tissues. In vivo experiments show that HSA/HAase@Ce6 effectively inhibits tumor growth in breast cancer mouse models. RNA-seq analysis of the mice that received the treatment of HSA/HAase@Ce6 shows enrichment of signaling pathways associated with ECM-degradation, which demonstrates that the matrix-degrading nanocapsules overcome the ECM-induced physical barriers in tumors. Overall, the matrix-degrading soft-nanoplatform represents a highly promising strategy to overcome ECM-induced physical barriers and enhance the therapeutic efficacy of nanomedicines.

3.
J Control Release ; 372: 386-402, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909699

ABSTRACT

Ferroptosis-related tumor therapy based on nanomedicines has recently gained significant attention. However, the therapeutic performance is still hindered by the tumor's physical barriers such as the fibrotic tumor matrix and elevated interstitial fluid pressure, as well as chemical barriers like glutathione (GSH) overabundance. These physicochemical barriers impede the bioavailability of nanomedicines and compromise the therapeutic efficacy of lipid reactive oxygen species (ROS). Thus, this study pioneers a manganese-mediated overcoming of physicochemical barriers in the tumor microenvironment using organosilica-based nanomedicine (MMONs), which bolsters the synergy of photothermal-ferroptosis treatment. The MMONs display commendable proficiency in overcoming tumor physical barriers, due to their MnO2-mediated shape-morphing and softness-transformation ability, which facilitates augmented cellular internalization, enhanced tumor accumulation, and superior drug penetration. Also, the MMONs possess excellent capability in chemical barrier overcoming, including MnO2-mediated dual GSH clearance and enhanced ROS generation, which facilitates ferroptosis and heat shock protein inhibition. Notably, the resulting integration of physical and chemical barrier overcoming leads to amplified photothermal-ferroptosis synergistic tumor therapy both in vitro and in vivo. Accordingly, the comparative proteomic analysis has identified promoted ferroptosis with a transient inhibitory response observed in the mitochondria. This research aims to improve treatment strategies to better fight the complex defenses of tumors.


Subject(s)
Ferroptosis , Manganese , Mice, Inbred BALB C , Reactive Oxygen Species , Animals , Ferroptosis/drug effects , Humans , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Mice , Manganese/administration & dosage , Manganese/chemistry , Mice, Nude , Tumor Microenvironment/drug effects , Female , Manganese Compounds/administration & dosage , Manganese Compounds/chemistry , Photothermal Therapy/methods , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/drug therapy , Glutathione/metabolism , Nanomedicine/methods , Antineoplastic Agents/administration & dosage
4.
Acta Biomater ; 184: 313-322, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897337

ABSTRACT

Antimicrobial phototherapy has gained recognition as a promising approach for addressing bacterial biofilms, however, its effectiveness is often impeded by the robust physical and chemical defenses of the biofilms. Traditional antibacterial nanoplatforms face challenges in breaching the extracellular polymeric substances barrier to efficiently deliver photosensitizers deep into biofilms. Moreover, the prevalent hypoxia within biofilms restricts the success of oxygen-reliant phototherapy. In this study, we engineered a soft mesoporous organosilica nanoplatform (SMONs) by incorporating polyethylene glycol (PEG), catalase (CAT), and indocyanine green (ICG), forming SMONs-PEG-CAT-ICG (SPCI). We compared the antimicrobial efficacy of SPCI with more rigid nanoplatforms. Our results demonstrated that unique flexible mechanical properties of SPCI enable it to navigate through biofilm barriers, markedly enhancing ICG penetration in methicillin-resistant Staphylococcus aureus (MRSA) biofilms. Notably, in a murine subcutaneous MRSA biofilm infection model, SPCI showed superior biofilm penetration and pharmacokinetic benefits over its rigid counterparts. The embedded catalase in SPCI effectively converts excess H2O2 present in infected tissues into O2, alleviating hypoxia and significantly boosting the antibacterial performance of phototherapy. Both in vitro and in vivo experiments confirmed that SPCI surpasses traditional rigid nanoplatforms in overcoming biofilm barriers, offering improved treatment outcomes for infections associated with bacterial biofilms. This study presents a viable strategy for managing bacterial biofilm-induced diseases by leveraging the unique attributes of a soft mesoporous organosilica-based nanoplatform. STATEMENT OF SIGNIFICANCE: This research introduces an innovative antimicrobial phototherapy soft nanoplatform that overcomes the inherent limitations posed by the protective barriers of bacterial biofilms. By soft nanoplatform with flexible mechanical properties, we enhance the penetration and delivery of photosensitizers into biofilms. The inclusion of catalase within this soft nanoplatform addresses the hypoxia in biofilms by converting hydrogen peroxide into oxygen in infected tissues, thereby amplifying the antibacterial effectiveness of phototherapy. Compared to traditional rigid nanoplatforms, this flexible nanoplatform not only promotes the delivery of therapeutic agents but also sets a new direction for treating bacterial biofilm infections, offering significant implications for future antimicrobial therapies.


Subject(s)
Anti-Bacterial Agents , Biofilms , Catalase , Indocyanine Green , Photosensitizing Agents , Biofilms/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Indocyanine Green/pharmacology , Indocyanine Green/chemistry , Catalase/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Phototherapy , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Nanoparticles/chemistry , Staphylococcal Infections/drug therapy , Permeability , Female , Mice, Inbred BALB C
5.
Adv Healthc Mater ; 13(2): e2302195, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37792547

ABSTRACT

Immune checkpoint blockade (ICB) treatments have contributed to substantial clinical progress. However, challenges persist, including inefficient drug delivery and penetration into deep tumor areas, inadequate response to ICB treatments, and potential risk of inflammation due to over-activation of immune cells and uncontrolled release of cytokines following immunotherapy. In response, this study, for the first time, presents a multimodal imaging-guided organosilica nanomedicine (DCCGP) for photoimmunotherapy of pancreatic cancer. The novel DCCGP nanoplatform integrates fluorescence, magnetic resonance, and real-time infrared photothermal imaging, thereby enhancing diagnostic precision and treatment efficacy for pancreatic cancer. In addition, the incorporated copper sulfide nanoparticles (CuS NPs) lead to improved tumor penetration and provide external regulation of immunotherapy via photothermal stimulation. The synergistic immunotherapy effect is realized through the photothermal behavior of CuS NPs, inducing immunogenic cell death and relieving the immunosuppressive tumor microenvironment. Coupling photothermal stimulation with αPD-L1-induced ICB, the platform amplifies the clearance efficiency of tumor cells, achieving an optimized synergistic photoimmunotherapy effect. This study offers a promising strategy for the clinical application of ICB-based combined immunotherapy and presents valuable insights for applications of organosilica in precise tumor immunotherapy and theranostics.


Subject(s)
Nanoparticles , Pancreatic Neoplasms , Humans , Nanomedicine/methods , Cell Line, Tumor , Phototherapy , Nanoparticles/therapeutic use , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/therapy , Immunotherapy , Multimodal Imaging , Theranostic Nanomedicine/methods , Tumor Microenvironment
6.
J Mater Chem B ; 11(47): 11280-11289, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37990931

ABSTRACT

The combination of noble metal nanoparticles with metal-organic complexes has attracted great attention for exploring new properties in biomedical application areas. So far, the preparation of noble metal nanoparticle-loaded metal-organic complexes often requires complex processes. Here, a simple coordination-crystallization approach was developed to prepare platinum nanoparticle-anchored metal-organic complexes (Pt-MOCs) by directly mixing disulfiram (DSF), chloroplatinic acid, and a reducing agent. The DSF and Pt ions first coordinate forming metal-organic complex nanospheres and then the Pt nanoparticles crystallized on the surface taking advantage of the coordination rate of the metal ions and organic ligand being greater than the reduction rate of the metal ions. The Pt-MOCs possess uniform and adjustable diameter (240-536 nm), and their surface potentials can also be modulated easily from -22 to +14 mV by adjusting the ratio of DSF and chloroplatinic acid. Phantom experiments show that the Pt-MOC nanospheres significantly improve the efficiency of singlet oxygen production after exposure to ultrasound irradiation. In vitro experiments show that the Pt-MOCs effectively produce reactive oxygen species and exhibit superior cytotoxicity for tumor cells under ultrasound irradiation compared to metal-organic complexes (MOCs) or Pt nanoparticles. Taken together, this work reports a coordination-crystallization approach to synthesize Pt-MOCs, which show excellent sonodynamic therapy for tumors.


Subject(s)
Coordination Complexes , Nanospheres , Neoplasms , Humans , Platinum/pharmacology , Platinum/chemistry , Nanospheres/chemistry , Crystallization , Neoplasms/drug therapy , Ions
7.
Adv Sci (Weinh) ; 10(18): e2301339, 2023 06.
Article in English | MEDLINE | ID: mdl-37088780

ABSTRACT

Dendritic cell (DC)-based cancer immunotherapy has exhibited remarkable clinical prospects because DCs play a central role in initiating and regulating adaptive immune responses. However, the application of traditional DC-mediated immunotherapy is limited due to insufficient antigen delivery, inadequate antigen presentation, and high levels of immunosuppression. To address these challenges, engineered biomaterials have been exploited to enhance DC-mediated immunotherapeutic effects. In this review, vital principal components that can enhance DC-mediated immunotherapeutic effects are first introduced. The parameters considered in the rational design of biomaterials, including targeting modifications, size, shape, surface, and mechanical properties, which can affect biomaterial optimization of DC functions, are further summarized. Moreover, recent applications of various engineered biomaterials in the field of DC-mediated immunotherapy are reviewed, including those serve as immune component delivery platforms, remodel the tumor microenvironment, and synergistically enhance the effects of other antitumor therapies. Overall, the present review comprehensively and systematically summarizes biomaterials related to the promotion of DC functions; and specifically focuses on the recent advances in biomaterial designs for DC activation to eradicate tumors. The challenges and opportunities of treatment strategies designed to amplify DCs via the application of biomaterials are discussed with the aim of inspiring the clinical translation of future DC-mediated cancer immunotherapies.


Subject(s)
Immunotherapy , Neoplasms , Immunosuppression Therapy , Antigen Presentation , Biocompatible Materials , Dendritic Cells , Neoplasms/therapy
8.
J Nanobiotechnology ; 21(1): 101, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36945005

ABSTRACT

Tumor microenvironment (TME) plays an important role in tumor progression, metastasis and therapy resistance. Remodeling the TME has recently been deemed an attractive tumor therapeutic strategy. Due to its complexity and heterogeneity, remodeling the TME still faces great challenges. With the great advantage of drug loading ability, tumor accumulation, multifactor controllability, and persistent guest molecule release ability, mesoporous nanodrug delivery systems (MNDDSs) have been widely used as effective antitumor drug delivery tools as well as remolding TME. This review summarizes the components and characteristics of the TME, as well as the crosstalk between the TME and cancer cells and focuses on the important role of drug delivery strategies based on MNDDSs in targeted remodeling TME metabolic and synergistic anticancer therapy.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Tumor Microenvironment , Nanoparticles/therapeutic use , Antineoplastic Agents/therapeutic use , Neoplasms/pathology , Drug Delivery Systems
9.
Article in English | MEDLINE | ID: mdl-36881613

ABSTRACT

Despite the great achievements of immune checkpoint blockade (ICB) therapy on programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) axis, ICB monotherapy still faces obstacles in eradicating solid tumors due to the lack of tumor-associated antigens or tumor-specific cytotoxicity. Photothermal therapy (PTT) is a potential therapeutic modality because it can noninvasively kill tumor cells by thermal ablation and generate both tumor-specific cytotoxicity and immunogenicity, which holds great feasibility to improve the efficiency of ICB by providing complementary immunomodulation. Except for the PD-1/PD-L1 axis, the cluster of differentiation 47 (CD47)/signal regulatory protein alpha (SIRPα) pathway has been considered as a novel strategy of tumor cells to evade the surveillance of macrophages and inactivate the immune response of PD-L1 blockade therapy. Therefore, it is necessary to synergize the antitumor effect of dual-targeting PD-L1 and CD47. Although promising, the application of PD-L1/CD47 bispecific antibodies, especially in combination with PTT, remains a formidable problem, due to the low objective response, activity loss at relatively high temperature, or nonvisualization. Herein, instead of using antibodies, we use MK-8628 (MK) to down-regulate both PD-L1 and CD47 simultaneously through halting the active transcription of oncogene c-MYC, leading to elicitation of the immune response. The hollow polydopamine (HPDA) nanospheres are introduced as a biocompatible nanoplatform with high loading capacity and magnetic resonance imaging (MRI) ability to deliver MK and induce PTT (HPDA@MK). Compared to preinjection, HPDA@MK exhibits the strongest MRI signal at 6 h postintravenous injection to guide the precise combined treatment time. However, due to the local delivery and controlled release of inhibitors, HPDA@MK down-regulates c-MYC/PD-L1/CD47, promotes the activation and recruitment of cytotoxic T cells, regulates the M2 macrophages polarization in tumor sites, and especially boosts the combined therapeutic efficacy. Collectively, our work presents a simple but distinctive approach for c-MYC/PD-L1/CD47-targeted immunotherapy combined with PTT that may provide a desirable and feasible strategy for the treatment of other clinical solid tumors.

10.
RSC Adv ; 13(9): 5609-5618, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36798745

ABSTRACT

As a non-invasive cancer treatment, photodynamic therapy (PDT) has great applications in superficial tumors because of its high selectivity and low cumulative toxicity. However, the poor tumor-targeting ability and short blood circulation time of conventional photosensitizers (PSs) limit the efficacy of PDT to some extent. In this study, we synthesized flexible hollow human serum albumin (HHSA) and loaded photosensitizer Chlorin e6 (Ce6) and the chemotherapeutic drug Doxorubicin (DOX) for synergistic cancer therapy. HHSA can enhance drug delivery and cellular uptake through targeting gp60 and SPARC receptors and unique flexible hollow structures. The TEM images show that HHSA possesses distinct flexible hollow structures, as well as good monodispersity and deformability. After loading Ce6 and DOX, HHSA@Ce6-DOX displays better therapeutic effects than HHSA@DOX on the growth of 4T1 breast cancers without irradiation. Remarkably, it has a significantly higher therapeutic effect (relative cell activity: 45% vs. 74%) than HHSA@Ce6 under 660 nm irradiation. Furthermore, the excellent biocompatibility of HHSA@Ce6-DOX has been proved both in vitro and in vivo, indicating that it has a promising future in synergistic tumor treatments.

11.
Adv Healthc Mater ; 12(17): e2203028, 2023 07.
Article in English | MEDLINE | ID: mdl-36807733

ABSTRACT

Traditional dendritic cell (DC)-mediated immunotherapy is usually suppressed by weak immunogenicity in tumors and generally leads to unsatisfactory outcomes. Synergistic exogenous/endogenous immunogenic activation can provide an alternative strategy for evoking a robust immune response by promoting DC activation. Herein, Ti3 C2 MXene-based nanoplatforms (termed MXP) are prepared with high-efficiency near-infrared photothermal conversion and immunocompetent loading capacity to form endogenous/exogenous nanovaccines. Specifically, the immunogenic cell death of tumor cells induced by the photothermal effects of the MXP can generate endogenous danger signals and antigens release to boost vaccination for DC maturation and antigen cross-presentation. In addition, MXP can deliver model antigen ovalbumin (OVA) and agonists (CpG-ODN) as an exogenous nanovaccine (MXP@OC), which further enhances DC activation. Importantly, the synergistic strategy of photothermal therapy and DC-mediated immunotherapy by MXP significantly eradicates tumors and enhances adaptive immunity. Hence, the present work provides a two-pronged strategy for improving immunogenicity and killing tumor cells to achieve a favorable outcome in tumor patients.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , Humans , Neoplasms/therapy , Antigen Presentation , Antigens/pharmacology , Immunotherapy , Dendritic Cells , Cancer Vaccines/pharmacology
12.
Int J Nanomedicine ; 18: 527-539, 2023.
Article in English | MEDLINE | ID: mdl-36742990

ABSTRACT

Introduction: Photodynamic therapy (PDT) has attracted increasing attention for tumor treatment because of its minimal invasiveness and specific spatiotemporal selectivity. However, insufficient tumor accumulation and low cellular uptake of photosensitizers limit its therapeutic efficacy. Methods: In this study, flexible hollow human serum albumin/catalase nanocapsules (HSA/CATs) were created using a core-assisted protein-coating method and combined with the photosensitizer chlorin e6 (HSA/CAT@Ce6) for PDT. Results and Discussion: Transmission electron microscopy (TEM) images demonstrate that HSA/CAT nanocapsules are flexible, with a uniform diameter (310 nm) and a well-defined hollow structure. Thanks to their flexibility, HSA/CAT@Ce6 nanocapsules show a higher cellular uptake than rigid nanoparticles. The nanocapsules effectively generate reactive oxygen species (ROS) in 4T1 cells because of their high cellular uptake and catalytic capacity, remarkably enhancing their in vitro PDT efficacy. In addition, the in vivo tumor accumulation of HSA/CAT@Ce6 nanocapsules is significantly larger than that of rigid nanoparticles and Ce6, meaning they are highly effective in tumor cell ablation. This demonstrates that our flexible nanoplatform holds great promise for enhancing PDT of tumor.


Subject(s)
Nanocapsules , Nanoparticles , Photochemotherapy , Porphyrins , Humans , Serum Albumin, Human , Photochemotherapy/methods , Catalase , Cell Line, Tumor , Photosensitizing Agents/chemistry , Nanoparticles/chemistry , Porphyrins/chemistry
13.
Biomater Sci ; 11(3): 822-827, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36625156

ABSTRACT

The elasticity of nanoparticles plays a critical role in regulating nanoparticle-biosystem interactions. However, the elasticity of traditional organic-based carriers can only be regulated within a narrow range, and the effects of elasticity on in vivo biological processes have not been evaluated until now. Here, we construct hyaluronic acid modified mesoporous organosilica nanoparticles (MONs-HA) with a wide range of elasticity by an interior preferential etching approach and investigate the impact of their elasticity on in vitro cellular uptake, in vivo blood circulation, and tumor accumulation. The Young's moduli of the prepared MONs-HA are 1.64, 0.93, 0.78, 0.4 and 0.29 GPa (denoted as rigid MONs0-HA, semi-elastic MONs20-HA and MONs50-HA, elastic MONs100-HA and MONs200-HA), respectively. They all possess a similar hydrodynamic size (245-257 nm), similar surface electronegativity (-27 to -35 mV), and excellent dispersibility. In vitro experiments demonstrate that the elastic MONs100-HA and MONs200-HA (0.4 and 0.29 GPa) exhibit significantly greater cellular uptake relative to semi-elastic MONs20-HA and MONs50-HA (0.93 and 0.78 GPa) or rigid MONs0-HA (1.64 GPa). Simultaneously, these elastic MONs100-HA and MONs200-HA show an efficiently prolonged circulation time. In vivo results revealed that the elastic MONs100-HA show enhanced tumor accumulation compared to semi-elastic and rigid MONs-HA after intravenous administration. These desirable features of elasticity can direct the design of nanoplatforms, leading to an enhanced tumor delivery efficiency.


Subject(s)
Nanocapsules , Nanoparticles , Humans , Elasticity , Cell Line, Tumor , MCF-7 Cells , Hyaluronic Acid
14.
J Colloid Interface Sci ; 633: 102-112, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36436344

ABSTRACT

Magnetic resonance (MR) imaging techniques, which can provide images with excellent anatomical detail, are widely used in clinical diagnosis. However, the current clinical small molecule gadolinium (Gd) contrast agents have the defects of relatively low sensitivity and poor tumor-target specificity, preventing their adoption in biology and medicine. Herein, a facile synthetic strategy to fabricate gadolinium-hybridized mesoporous organosilica nanoparticles (MOSG) through a nanoprecipitation reaction, with the surface of nanoparticles grafted with the fluorescent dye isothiocyanate (FITC) and arginine-glycine-aspartic acid (RGD) for delivery of the antitumour drug doxorubicin hydrochloride (DOX), resulting in a high-performance nanotheranostic (RGD-MOSG-FITC/DOX) for targeted magnetic resonance imaging and chemotherapy of tumors. The prepared MOSG had a particle size of 60-80 nm and gadolinium elements were distributed in clusters that exhibited boosted longitudinal relaxivity. Routine blood tests and histopathology indicated good biocompatibility of MOSG. Furthermore, after being decorated with Arg-Gly-Asp peptide (RGD), RGD-MOSG-FITC demonstrated more preferable cellular uptake by HeLa cells (high expression of αⅤß3) than MOSG without RGD grafting. Additionally, the tumor growth inhibition effect of RGD-MOSG-FITC/DOX was substantially more effective than that of the other groups. Therefore, this new delivery platform has good application potential in the field of tumor diagnosis and treatment.


Subject(s)
Gadolinium , Nanoparticles , Humans , HeLa Cells , Gadolinium/chemistry , Fluorescein-5-isothiocyanate , Nanoparticles/chemistry , Drug Delivery Systems , Doxorubicin/pharmacology , Doxorubicin/chemistry , Magnetic Resonance Imaging/methods , Oligopeptides/chemistry , Cell Line, Tumor
15.
Angew Chem Int Ed Engl ; 62(7): e202216361, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36524465

ABSTRACT

Herein, we report, for the first time, a unique stiffness-transformable manganese oxide hybridized mesoporous organosilica nanoplatform (MMON) for enhancing tumor therapeutic efficacy. The prepared MMONs had a quasi-spherical morphology and were completely transformed into soft bowl-like nanocapsules in the simulated tumor microenvironment through the breakage of Mn-O bonds, which decreased their Young's modulus from 165.7 to 84.5 MPa. Due to their unique stiffness transformation properties, the MMONs had reduced macrophage internalization, improved tumor cell uptake, and enhanced penetration of multicellular spheroids. In addition, in vivo experiments showed that the MMONs displayed a 3.79- and 2.90-fold decrease in non-specific liver distribution and a 2.87- and 1.83-fold increase in tumor accumulation compared to their soft and stiff counterparts, respectively. Furthermore, chlorin e6 (Ce6) modified MMONs had significantly improved photodynamic therapeutic effect.


Subject(s)
Nanocapsules , Nanoparticles , Neoplasms , Photochemotherapy , Porphyrins , Humans , Tumor Microenvironment , Neoplasms/drug therapy , Neoplasms/pathology , Cell Line, Tumor , Nanoparticles/chemistry , Photosensitizing Agents/pharmacology , Porphyrins/chemistry
16.
Mol Pharm ; 19(9): 3405-3411, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35972444

ABSTRACT

Noninvasive PET molecular imaging using radiopharmaceuticals is important to classify breast cancer in the clinic. The aim of this study was to investigate the combination of 18F-FDG and 18F-Alfatide II for predicting molecular subtypes of invasive breast cancer. Forty-four female patients with clinically suspected breast cancer were recruited and underwent 18F-FDG and 18F-Alfatide II PET/CT within a week. Tracer uptake in breast lesions was assessed using the maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), and SUVmax ratio of 18F-FDG to 18F-Alfatide II (FAR). Invasive breast cancer lesions were further classified as luminal A subtype, luminal B subtype, human epidermal growth factor receptor-2 (HER2) overexpressing subtype, and triple negative subtype according to the expression of the estrogen receptor (ER), progesterone receptor (PR), HER2, and Ki-67. Among 44 patients, 35 patients were pathologically diagnosed with invasive breast cancer. The SUVmax and SUVmean of 18F-FDG were significantly higher in the ER-negative group than those in the ER-positive group, as well as in the PR-negative group than those in the PR-positive group. However, the SUVmax and SUVmean of 18F-Alfatide II were higher in the ER-positive group and the PR-positive group. By combining 18F-FDG and 18F-Alfatide II, the FAR was lower in the ER-positive group and the PR-positive group. The HER2 overexpressing subtype showed the highest SUVmax and SUVmean for 18F-FDG while the luminal B (HER2 negative) subtype revealed the lowest values. The luminal B (HER2 negative) subtype showed the highest 18F-Alfatide II SUVmax, while the triple negative subtype showed the lowest 18F-Alfatide II SUVmax. The FAR was the lowest in the luminal B (HER2 negative) subtype and much higher in the HER2 overexpressing and triple negative subtypes. FAR less than 1 predicted the luminal B (HER2 negative) subtype with high specificity (93.1%) and NPV (90%). FAR greater than 3 predicted the HER2 overexpressing subtype and triple negative subtype (namely, the nonluminal subtype) with very high specificity (100%) and PPV (100%). In summary, FAR, the combined PET parameter of 18F-FDG and 18F-Alfatide II, can be used to predict molecular subtypes of invasive breast cancer, especially for the luminal B (HER2 negative) subtype and the nonluminal subtype.


Subject(s)
Breast Neoplasms , Fluorodeoxyglucose F18 , Breast Neoplasms/metabolism , Female , Fluorodeoxyglucose F18/metabolism , Humans , Peptides, Cyclic , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism , Receptor, ErbB-2/metabolism , Retrospective Studies
17.
RSC Adv ; 12(26): 16927-16941, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35754870

ABSTRACT

Due to the limitations resulting from hypoxia and the self-aggregation of photosensitizers, photodynamic therapy (PDT) has not been applied clinically to treat most types of solid tumors. Zeolitic imidazolate framework-8 (ZIF-8) is a common metal-organic framework that has ultra-high porosity, an adjustable structure, good biocompatibility, and pH-induced biodegradability. In this review, we summarize the applications of ZIF-8 and its derivatives in PDT. This review is divided into two parts. In the first part, we summarize progress in the application of ZIF-8 to enhance PDT and realize theranostics. We discuss the use of ZIF-8 to avoid the self-aggregation of photosensitizers, alleviate hypoxia, increase the PDT penetration depth, and combine PDT with multi-modal imaging. In the second part, we summarize how ZIF-8 can achieve synergistic PDT with other anti-tumor therapies, including chemotherapy, photothermal therapy, chemodynamic therapy, starvation therapy, protein therapy, gene therapy, and immunotherapy. Finally, we highlight the challenges that must be overcome for ZIF-8 to be widely applied in PDT. To the best of our knowledge, this is the first review of ZIF-8-based nanoplatforms for PDT.

18.
Small ; 18(32): e2201108, 2022 08.
Article in English | MEDLINE | ID: mdl-35734820

ABSTRACT

Nanovaccine-based immunotherapy (NBI) has the ability to initiate dendritic cell (DC)-mediated tumor-specific immune responses and maintain long-term antitumor immune memory. To date, the mechanism by which the mechanical properties of nanoparticles alter the functions of DCs in NBI remains largely unclear. Here, a soft mesoporous organosilica-based nanovaccine (SMONV) is prepared and the elasticity-dependent effect of the nanovaccine on the underlying DC-mediated immune responses is studied. It is found that the elasticity results in greater internalization of SMONV by DCs, followed by the induction of substantial cytosolic delivery of antigens via endosomal escape, leading to effective DC maturation and antigen cross-presentation. Impressively, elasticity enables SMONV to enhance lymphatic drainage of antigens in vivo, thus stimulating robust humoral and cellular immunity. The results from therapeutic tumor vaccination further reveal that subcutaneously administered SMONV effectively suppresses tumor growth in tumor-bearing mice by evoking antigen-specific CD8+ T-cell immune responses, mitigating regulatory T-cell-mediated immunosuppression, and increasing central memory and effector memory T-cell populations. Furthermore, combinatorial immunization with SMONV and anti-PD-L1 blocking antibodies results in an amplified therapeutic effect on tumor-bearing mice. These findings reveal the elastic effect of the nanovaccine on DC-mediated immune responses, and the prepared SMONV represents a facile and powerful strategy for antitumor immunotherapy.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , Animals , Antigens , CD8-Positive T-Lymphocytes , Dendritic Cells , Immunotherapy/methods , Mice , Mice, Inbred C57BL , Neoplasms/therapy
19.
Nanoscale ; 14(27): 9702-9714, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35766330

ABSTRACT

Nanoparticle flexibility is an important parameter in determining cell uptake and tumor accumulation, thus modulating therapeutic efficiency in cancer treatment. Herein, we successfully prepared CuS-embedded human serum albumin hollow nanocapsules (denoted CuS/HSA) by a hard-core-assisted layer-by-layer coating approach. This approach afforded CuS/HSA hollow nanocapsules with controllable shell thickness, tunable flexibility, uniform size (272.9 nm), a large hollow cavity, peroxidase-like activity, excellent photothermal conversion ability, and a high tetra-(4-aminophenyl) porphyrin (TAPP) loading capacity (27.3 wt%). The peroxidase-like activity of the CuS nanoparticles enabled them to overcome tumor hypoxia and augment the sonodynamic therapeutic (SDT) effects and photothermal conversion ability for photothermal therapy (PTT). In vitro experiments showed that the CuS/HSA-TAPP hollow nanocapsules efficiently induced cancer cell apoptosis under US irradiation and cancer cell ablation under laser irradiation, thus facilitating synergistic SDT and PTT. Importantly, the flexibility of the CuS/HSA hollow nanocapsules resulted in significantly enhanced cellular internalization and a longer mean residence time (131.3 h) than their solid counterparts (21.0 h). In a breast tumor model, the flexible CuS/HSA hollow nanocapsules exhibited high tumor accumulation of up to 27.1%. In vivo experiments demonstrated that the flexible CuS/HSA-TAPP hollow nanocapsules effectively eliminated breast tumors via the synergistic effect of SDT and PTT.


Subject(s)
Nanocapsules , Nanoparticles , Neoplasms , Copper/pharmacology , Copper/therapeutic use , Humans , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Peroxidases , Phototherapy/methods , Photothermal Therapy , Serum Albumin, Human
20.
J Appl Toxicol ; 42(11): 1757-1765, 2022 11.
Article in English | MEDLINE | ID: mdl-35618442

ABSTRACT

Although quantum dots (QDs) have shown great potential for various biomedical applications, their potential toxicity still needs to be comprehensively investigated. Previous studies showed that intravenous exposure of CdTe QDs at low concentration did not lead to obvious in vivo toxicity in the long term. However, the influence of CdTe QDs on the gut microbiota and the intestine is still unknown. Here, we explored whether single intravenous injection of CdTe QDs at low concentration can affect the gut microbiota and intestine of mice in short term. The results showed that CdTe QDs caused an imbalance of gut microbiota, especially the rapid increase in Lactobacillus on day 1 post-treatment. Meanwhile, the intestine exhibited the promotion of oxidative stress, inflammatory response, and hemorrhaging on days 5 and 15. These results demonstrate that the gut microbiota and the intestine are very sensitive to the toxicity of low-concentration CdTe QDs. This study provides further insight and method for the biosafety evaluation of nanomaterials.


Subject(s)
Cadmium Compounds , Gastrointestinal Microbiome , Quantum Dots , Animals , Cadmium Compounds/toxicity , Dysbiosis/chemically induced , Intestines , Mice , Quantum Dots/toxicity , Tellurium/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL