Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Reprod Dev ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39048372

ABSTRACT

Zinc is an essential trace element for various physiological functions, including reproduction. The influx/efflux of zinc ions is regulated by zinc transporters (Zip1-14 and ZnT1-8, 10). However, the precise roles of zinc transporters and zinc dynamics in reproductive functions are unknown. In this study, ZnT3/Slc30a3 gene knockout (KO) mice were used to analyze the role of ZnT3. In ZnT3 KO mice, intracellular zinc ions in oocytes/zygotes were significantly reduced compared to those in controls, and free zinc ions did not accumulate in the oocyte cytoplasm. However, fertilization of these oocytes and the average litter size were comparable to those of control mice. Our results suggest that ZnT3 plays an important role in the accumulation of zinc ions in oocytes but not in the developmental ability of mice. ZnT3 KO mice will be useful for examining zinc dynamics in oocytes and other tissues.

2.
Commun Biol ; 7(1): 740, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890503

ABSTRACT

Although low estrogen is considered to suppress uterine endometrial carcinoma, the most cases occur in the postmenopausal stage. After menopause, the production of androgen level also declines. Therefore, to resolve the above enigma, we hypothesize that the postmenopausal decline of androgen is a trigger of its progression. In the present study, to validate this hypothesis, we examine the pathological roles of androgen/AR by analyzing clinical data, culturing endometrioid cancer cell lines, and using murine models. Clinical data show that androgen receptor (AR) expression and serum dihydrotestosterone (DHT) are associated with lower disease-free survival (DFS). DHT suppresses malignant behaviors in AR-transfected human endometrial cancer cells (ECC). In ovariectomized Ptenff/PRcre/+ mice, DHT decreases the proliferation of spontaneously developed murine ECC. In AR-transfected human ECC and Ptenff/PRcre/+ mice, DHT suppresses FOXP4 expression. FOXP4-overexpressed human ECC increases, while FOXP4-knocked-down ECC shows decreased malignant behaviors. DHT/AR-mediated ECC suppression is restored by FOXP4 overexpression. The high FOXP4 expression is significantly correlated with low postoperative DFS. These findings indicate that the androgen/AR system suppresses the malignant activity of endometrial carcinoma and that downstream FOXP4 is another target molecule. These findings will also impact developments in clinical approaches to elderly health.


Subject(s)
Androgens , Endometrial Neoplasms , Forkhead Transcription Factors , Receptors, Androgen , Female , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/genetics , Humans , Animals , Mice , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Androgens/metabolism , Cell Line, Tumor , Dihydrotestosterone/metabolism , Dihydrotestosterone/pharmacology , Gene Expression Regulation, Neoplastic , Middle Aged , Cell Proliferation
3.
J Pharm Sci ; 113(7): 1996-2000, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641061

ABSTRACT

Sodium-phosphate transporter NPT4 (SLC17A3) is a membrane transporter for organic anionic compounds localized on the apical membranes of kidney proximal tubular epithelial cells and plays a role in the urinary excretion of organic anionic compounds. However, its physiological role has not been sufficiently elucidated because its substrate specificity is yet to be determined. The present study aimed to comprehensively explore the physiological substrates of NPT4 in newly developed Slc17a3-/- mice using a metabolomic approach. Metabolomic analysis showed that the plasma concentrations of 11 biological substances, including 3-indoxyl sulfate, were more than two-fold higher in Slc17a3-/- mice than in wild-type mice. Moreover, urinary excretion of 3-indoxyl sulfate was reduced in Slc17a3-/- mice compared to that in wild-type mice. The uptake of 3-indoxyl sulfate by NPT4-expressing Xenopus oocytes was significantly higher than that by water-injected oocytes. The calculated Km and Vmax values for NPT4-mediated 3-indoxyl sulfate uptake were 4.52 ± 1.18 mM and 1.45 ± 0.14 nmol/oocyte/90 min, respectively. In conclusion, the present study revealed that 3-indoxyl sulfate is a novel substrate of NPT4 based on the metabolomic analysis of Slc17a3-/- mice, suggesting that NPT4 regulates systemic exposure to 3-indoxyl sulfate by regulating its urinary excretion.


Subject(s)
Indican , Mice, Knockout , Oocytes , Uremic Toxins , Animals , Male , Mice , Indican/metabolism , Kidney/metabolism , Metabolomics/methods , Mice, Inbred C57BL , Oocytes/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Uremic Toxins/metabolism , Xenopus laevis
4.
FASEB J ; 37(8): e23093, 2023 08.
Article in English | MEDLINE | ID: mdl-37440278

ABSTRACT

The precise control of endometrial receptivity is crucial for successful embryo implantation, which is strictly regulated by the ovarian steroid hormones estrogen and progesterone. Despite our improved understanding of the genetic regulation of implantation downstream of the action of hormones, we do not know much about the epigenetic regulation that occurs during early pregnancy. To investigate the role of the N6-methyladenosine (m6A) RNA modification in embryo implantation, we generated mice with conditional deletion of Mettl14, a core component of the m6A writer complex, in the uterus. These mice were infertile due to implantation failure. We showed that Mettl14-deficient uteri had aberrant upregulation of estrogen receptor α (ERα) signaling and ERα phosphorylation, but progesterone receptor (PGR) signaling was largely unaffected. Additionally, Mettl14 deletion led to abnormal activation of the innate immune pathway in Mettl14-deficient uteri. This effect was accompanied by the infiltration of immune cells, such as macrophages and dendritic cells, into the basal region of the endometrial epithelium. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed that genes involved in the innate immune response had decreased m6A peaks in Mettl14-deficient mice. These results suggest that Mettl14 plays a crucial role in successful implantation by precisely regulating both ERα signaling and innate immunity in the uterus.


Subject(s)
Estrogen Receptor alpha , Receptors, Estrogen , Pregnancy , Female , Mice , Animals , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Receptors, Estrogen/metabolism , Epigenesis, Genetic , Embryo Implantation/physiology , Uterus/metabolism , Progesterone/metabolism , RNA/metabolism
5.
J Reprod Dev ; 69(4): 223-226, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37331813

ABSTRACT

Superovulation procedures are routinely and widely used in mouse reproductive technology. Previous studies have shown that a large number of oocytes can be obtained from adult mice (> 10 weeks old) using a combined treatment with progesterone (P4) and anti-inhibin serum (AIS). However, these effects have not been fully investigated in young (4 weeks) C57BL/6J mice. Here, we found that a modified superovulation protocol (combined treatment with P4, AIS, eCG (equine chorionic gonadotropin), and hCG (human chorionic gonadotropin); P4D2-Ae-h) improved the number of oocytes compared to the control (eCG and hCG) (39.7 vs. 21.3 oocytes/mouse). After in vitro fertilization, pronuclear formation rates were 69.3% (P4D2-Ae-h group) and 66.2% (control group). After embryo transfer, 46.4% (116/250) of the embryos in the P4D2-Ae-h group successfully developed to term, which was comparable to the control group (42.9%; 123/287 embryos). In conclusion, our protocol (P4D2-Ae-h) was effective for superovulation in young C57BL/6J mice.


Subject(s)
Gonadotropins, Equine , Inhibins , Oocytes , Progesterone , Animals , Female , Humans , Mice , Chorionic Gonadotropin/pharmacology , Gonadotropins, Equine/pharmacology , Horses , Inhibins/pharmacology , Mice, Inbred C57BL , Progesterone/pharmacology , Superovulation
6.
Life (Basel) ; 13(4)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37109509

ABSTRACT

During mammalian fertilization, repetitive rises of intracellular calcium called calcium oscillations are required for full activation of oocytes. Therefore, oocytes such as round spermatid injected or somatic cell nuclear transferred require additional artificial activation which mimics the calcium oscillations. It is well recognized that sperm specific phospholipase C (PLCζ) is a strong candidate as the sperm factor which can induce calcium oscillations and, at least in mammals, the genetic mutation of PLCζ in human causes male infertility due to the lack of calcium oscillations in the oocytes. Recent studies showed that the sperm lacking PLCζ (Plcz1-/-) still could induce rise(s) of intracellular calcium in the oocytes after IVF but not intracytoplasmic sperm injection (ICSI). In the ICSI oocytes, no pronuclear formation or development to the two-cell stage was observed. However, it is still unclear whether additional activation treatment can rescue the low developmental ability of Plcz1-/--sperm-derived oocytes after ICSI. In this study, we examined whether oocytes injected with a Plcz1-/- sperm can develop to term by additional artificial activation. In oocytes injected a Plcz1-/- sperm and Plcz1-/- and eCS (another candidate of the sperm factor) double knockout sperm (Plcz1-/-eCS-/-), the rates of pronuclear formation were very low (2.0 ± 2.3% and 6.1 ± 3.7%, respectively) compared to control (92.1 ± 2.6%). However, these rates were dramatically improved by additional procedures of PLCζ-mRNA injection or SrCl2 treatment (Plcz1-/- sperm + PLCζ mRNA, Plcz1-/- sperm + SrCl2 and Plcz1-/-eCS-/- sperm + PLCζ mRNA; 64.2 ± 10.8%, 89.2 ± 2.4% and 72.6 ± 5.4%, respectively). Most of the oocytes were developed to the two-cell stage. After embryo transfer, healthy pups were obtained in all these groups (Plcz1-/- sperm + PLCζ mRNA:10.0 ± 2.8%, Plcz1-/- sperm + SrCl2:4.0 ± 4.3% and Plcz1-/-eCS-/- sperm + PLCζ mRNA: 10.0 ± 5.7%). The rate in Plcz1-/- sperm + SrCl2 group was significantly lower than that in control (26.0 ± 2.4%). Taken together, our present results show that additional activation treatment such as SrCl2 and PLCζ mRNA can fully support to develop to term even in oocyte injected Plcz1-/- sperm. In addition, PLCζ-induced oocyte activation is more suitable for successful development to term compared to that such as phenomenon induced by SrCl2. These findings will contribute to improvement for male-dependent human infertility and reproductive technologies in other mammalian species.

7.
Sci Rep ; 13(1): 854, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36646738

ABSTRACT

Leukemia inhibitory factor (LIF) receptor, an interleukin 6 cytokine family signal transducer (Il6st, also known as Gp130) that is expressed in the uterine epithelium and stroma, has been recognized to play an essential role in embryo implantation. However, the molecular mechanism underlying Gp130-mediated LIF signaling in the uterine epithelium during embryo implantation has not been elucidated. In this study, we generated mice with uterine epithelium specific deletion of Gp130 (Gp130 ecKO). Gp130 ecKO females were infertile due to the failure of embryo attachment and decidualization. Histomorphological observation revealed that the endometrial shape and embryo position from Gp130 ecKO were comparable to those of the control, and uterine epithelial cell proliferation, whose attenuation is essential for embryo implantation, was controlled in Gp130 ecKO. Comprehensive gene expression analysis using RNA-seq indicates that epithelial Gp130 regulates the expression of estrogen- and progesterone-responsive genes in conjunction with immune response during embryo implantation. We also found that an epithelial remodeling factor, snail family transcriptional repressor 1 (Snai1), was markedly reduced in the pre-implantation uterus from Gp130 ecKO. These results suggest that not only the suppression of uterine epithelial cell proliferation, but also Gp130-mediated epithelial remodeling is required for successful implantation in mice.


Subject(s)
Embryo Implantation , Uterus , Female , Mice , Animals , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/metabolism , Uterus/metabolism , Embryo Implantation/physiology , Estrogens/metabolism , Progesterone/metabolism , Receptors, OSM-LIF , Leukemia Inhibitory Factor/metabolism
8.
Carcinogenesis ; 43(7): 647-658, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35353883

ABSTRACT

Serous carcinoma of the uterus (USC) is a pathological subtype of high-grade endometrial cancers, with no effective treatment for advanced cases. Since such refractory tumors frequently harbor antitumor immune tolerance, many immunotherapies have been investigated for various malignant tumors using immuno-competent animal models mimicking their local immunities. In this study, we established an orthotopic mouse model of high-grade endometrial cancer and evaluated the local tumor immunity to explore the efficacy of immunotherapies against USC. A multivariate analysis of 62 human USC cases revealed that the tumor-infiltrating cell status, few CD8+ cells and abundant myeloid-derived suppressor cells (MDSCs), was an independent prognostic factor (P < 0.005). A murine endometrial cancer cell (mECC) was obtained from C57BL/6 mice via endometrium-specific deletion of Pten and Tp53, and another high-grade cell (HPmECC) was established by further overexpressing Myc in mECCs. HPmECCs exhibited higher capacities of migration and anchorage-independent proliferation than mECCs (P < 0.01, P < 0.0001), and when both types of cells were inoculated into the uterus of C57BL/6 mice, the prognosis of mice bearing HPmECC-derived tumors was significantly poorer (P < 0.001). Histopathological analysis of HPmECC orthotopic tumors showed serous carcinoma-like features with prominent tumor infiltration of MDSCs (P < 0.05), and anti-Gr-1 antibody treatment significantly prolonged the prognosis of HPmECC-derived tumor-bearing mice (P < 0.05). High CCL7 expression was observed in human USC and HPmECC, and MDSCs migration was promoted in a CCL7 concentration-dependent manner. These results indicate that antitumor immunity is suppressed in USC due to increased number of tumor-infiltrating MDSCs via CCL signal.


Subject(s)
Cystadenocarcinoma, Serous , Endometrial Neoplasms , Myeloid-Derived Suppressor Cells , Animals , Cell Line, Tumor , Chemokine CCL7 , Cystadenocarcinoma, Serous/pathology , Endometrial Neoplasms/pathology , Female , Humans , Mice , Mice, Inbred C57BL , Tumor Microenvironment
9.
Anim Sci J ; 92(1): e13615, 2021.
Article in English | MEDLINE | ID: mdl-34402137

ABSTRACT

In mice, the conditional knockout strategy using the Cre-loxP system is useful for various types of research. The Cre mouse line with progesterone receptor promoter (PgrCre ) has been widely used to produce specific uterine gene-deficient mice, but in the Cre line, endogenous Pgr gene is replaced by Cre recombinase gene, which makes the breeding of homozygous mice (PgrCre/Cre ) difficult because they are infertile. Yang et al. (2013, https://10.1016/j.cell.2013.04.017) reported the generation of another PgriresCre mouse line that still has endogenous Pgr gene, and they inserted Cre recombinase downstream of the Pgr gene via an internal ribosome entry site (IRES). It is possible that this new PgriresCre line would be useful for uterine research as the mice can be bred as homozygotes (PgriresCre/iresCre ). Herein, we confirmed the PgriresCre mice effectively directed recombination in the female reproductive tract and was capable of genetic alteration in the endometrium that enables the studies of its uterine function. Our findings demonstrate that the new PgriresCre mouse line is also useful for the generation of uterine-specific knockout mice. The findings using PgriresCre mouse will contribute to the understanding of reproductive systems and diseases in humans and domestic animals.


Subject(s)
Internal Ribosome Entry Sites , Receptors, Progesterone , Animals , Female , Integrases/genetics , Mice , Mice, Knockout , Receptors, Progesterone/genetics
10.
Cell Death Differ ; 27(12): 3307-3320, 2020 12.
Article in English | MEDLINE | ID: mdl-32572167

ABSTRACT

During female mammal reproductive tract development, epithelial cells of the lower Müllerian duct are committed to become stratified squamous epithelium of the vagina and ectocervix, when the expression of ΔNp63 transcription factor is induced by mesenchymal cells. The absence of ΔNp63 expression leads to adenosis, the putative precursor of vaginal adenocarcinoma. Our previous studies with genetically engineered mouse models have established that fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK), bone morphogenetic protein (BMP)/SMAD, and activin A/runt-related transcription factor 1 (RUNX1) signaling pathways are independently required for ΔNp63 expression in Müllerian duct epithelium (MDE). Here, we report that sine oculis homeobox homolog 1 (SIX1) plays a critical role in the activation of ΔNp63 locus in MDE as a downstream transcription factor of mesenchymal signals. In the developing mouse reproductive tract, SIX1 expression was restricted to MDE within the future cervix and vagina. SIX1 expression was totally absent in SMAD4 null MDE and was reduced in RUNX1 null and FGFR2 null MDE, indicating that SIX1 is under the control of vaginal mesenchymal factors: BMP4, activin A and FGF7/10. Furthermore, Six1, Runx1, and Smad4 gene-dose-dependently activated ΔNp63 expression in MDE within the vaginal fornix. Using a mouse model of diethylstilbestrol (DES)-associated vaginal adenosis, we found DES action through epithelial estrogen receptor α (ESR1) inhibits activation of ΔNp63 locus in MDE by transcriptionally repressing SIX1 and RUNX1 in the vaginal fornix.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Epithelium/drug effects , Homeodomain Proteins/metabolism , Mullerian Ducts/drug effects , Smad4 Protein/metabolism , Vagina/embryology , Activins/metabolism , Animals , Cell Differentiation/physiology , Diethylstilbestrol/adverse effects , Estrogens, Non-Steroidal/adverse effects , Female , Gene Expression Regulation, Developmental , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Trans-Activators/metabolism , Uterus/embryology , Vagina/drug effects , Vaginal Diseases/chemically induced
11.
Cell Tissue Res ; 381(2): 229-237, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32418130

ABSTRACT

The submandibular gland (SMG) of newborn mice has no mature acini but has the rudiments of acini called terminal tubules (TT). The TT are composed of TT cells with dark secretory granules and proacinar cells with lighter secretory granules, the latter being considered the immediate precursor of mature acinar cells. TT cells contain a specific secretory protein, submandibular gland protein C (SMGC) and they decrease in number postnatally at a higher rate in males than in females. In the present study, in order to clarify the biological roles of TT cells and their secretory product SMGC, we generated a knockout (KO) mouse strain deficient in SMGC. The KO mice of both sexes grew normally, had normal reproductive capacity and had normal acinar and duct systems in the SMG in adult ages. However, through the neonatal and early postnatal stages, the KO mice were deficient not only in the production of SMGC but also in TT cells. With electron microscopy of the SMG of newborn KO mice, TT cells with characteristic granules were absent and replaced by undifferentiated ductal cells, whereas proacinar cells were normal. These results suggested that the absence of SMGC inhibits the development of TT cells and that the absence of SMGC and TT cells has no notable influence on the postnatal development of the acinar and duct systems in the SMG.


Subject(s)
Acinar Cells , Cell Differentiation , Mucins/physiology , Submandibular Gland , Acinar Cells/cytology , Acinar Cells/metabolism , Animals , Animals, Newborn , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Submandibular Gland/cytology , Submandibular Gland/metabolism
12.
Commun Chem ; 3(1): 183, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-36703437

ABSTRACT

Metabolic syndrome is associated with obesity, hypertension, and dyslipidemia, and increased cardiovascular risk. Therefore, quick and accurate measurements of specific metabolites are critical for diagnosis; however, detection methods are limited. Here we describe the synthesis of pillar[n]arenes to target 1-methylnicotinamide (1-MNA), which is one metabolite of vitamin B3 (nicotinamide) produced by the cancer-associated nicotinamide N-methyltransferase (NNMT). We found that water-soluble pillar[5]arene (P5A) forms host-guest complexes with both 1-MNA and nicotinamide, and water-soluble pillar[6]arene (P6A) selectively binds to 1-MNA at the micromolar level. P6A can be used as a "turn-off sensor" by photoinduced electron transfer (detection limit is 4.38 × 10-6 M). In our cell-free reaction, P6A is used to quantitatively monitor the activity of NNMT. Moreover, studies using NNMT-deficient mice reveal that P6A exclusively binds to 1-MNA in crude urinary samples. Our findings demonstrate that P6A can be used as a biosensor to quantify 1-MNA in crude biological samples.

13.
Nat Cell Biol ; 21(8): 1003-1014, 2019 08.
Article in English | MEDLINE | ID: mdl-31371825

ABSTRACT

In many cancers, high proliferation rates correlate with elevation of rRNA and tRNA levels, and nucleolar hypertrophy. However, the underlying mechanisms linking increased nucleolar transcription and tumorigenesis are only minimally understood. Here we show that IMP dehydrogenase-2 (IMPDH2), the rate-limiting enzyme for de novo guanine nucleotide biosynthesis, is overexpressed in the highly lethal brain cancer glioblastoma. This leads to increased rRNA and tRNA synthesis, stabilization of the nucleolar GTP-binding protein nucleostemin, and enlarged, malformed nucleoli. Pharmacological or genetic inactivation of IMPDH2 in glioblastoma reverses these effects and inhibits cell proliferation, whereas untransformed glia cells are unaffected by similar IMPDH2 perturbations. Impairment of IMPDH2 activity triggers nucleolar stress and growth arrest of glioblastoma cells even in the absence of functional p53. Our results reveal that upregulation of IMPDH2 is a prerequisite for the occurance of aberrant nucleolar function and increased anabolic processes in glioblastoma, which constitutes a primary event in gliomagenesis.


Subject(s)
Carcinogenesis/metabolism , Glioblastoma/metabolism , IMP Dehydrogenase/metabolism , Cell Line, Tumor , Cell Nucleolus/metabolism , Cell Proliferation/physiology , Cell Transformation, Neoplastic/metabolism , Humans , IMP Dehydrogenase/genetics , RNA, Ribosomal/metabolism
14.
Proc Natl Acad Sci U S A ; 116(10): 4528-4537, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30782821

ABSTRACT

Endometrioid endometrial carcinomas (EECs) carry multiple driver mutations even when they are low grade. However, the biological significance of these concurrent mutations is unknown. We explored the interactions among three signature EEC mutations: loss-of-function (LOF) mutations in PTEN, gain-of-function (GOF) mutations of phosphoinositide 3-kinase (PI3K), and CTNNB1 exon 3 mutations, utilizing in vivo mutagenesis of the mouse uterine epithelium. While epithelial cells with a monoallelic mutation in any one of three genes failed to propagate in the endometrium, any combination of two or more mutant alleles promoted the growth of epithelium, causing simple hyperplasia, in a dose-dependent manner. Notably, Ctnnb1 exon 3 deletion significantly increased the size of hyperplastic lesions by promoting the growth of PTEN LOF and/or PI3K GOF mutant cells through the activation of neoadenogenesis pathways. Although these three mutations were insufficient to cause EEC in intact female mice, castration triggered malignant transformation, leading to myometrial invasion and serosal metastasis. Treatment of castrated mice with progesterone or estradiol attenuated the neoplastic transformation. This study demonstrates that multiple driver mutations are required for premalignant cells to break the growth-repressing field effect of normal endometrium maintained by ovarian steroids and that CTNNB1 exon 3 mutations play critical roles in the growth of preneoplastic cells within the endometrium of premenopausal women and in the myometrial invasion of EECs in menopausal women.


Subject(s)
Endometrial Hyperplasia/pathology , Endometrial Neoplasms/physiopathology , Ovary/physiopathology , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , beta Catenin/genetics , Alleles , Cell Transformation, Neoplastic , Disease Progression , Endometrial Hyperplasia/enzymology , Endometrial Hyperplasia/metabolism , Endometrial Neoplasms/enzymology , Female , Humans , Mutation
15.
PLoS Genet ; 14(8): e1007630, 2018 08.
Article in English | MEDLINE | ID: mdl-30142194

ABSTRACT

Mutation of the tumor suppressor Pten often leads to tumorigenesis in various organs including the uterus. We previously showed that Pten deletion in the mouse uterus using a Pgr-Cre driver (Ptenf/fPgrCre/+) results in rapid development of endometrial carcinoma (EMC) with full penetration. We also reported that Pten deletion in the stroma and myometrium using Amhr2-Cre failed to initiate EMC. Since the Ptenf/fPgrCre/+ uterine epithelium was primarily affected by tumorigenesis despite its loss in both the epithelium and stroma, we wanted to know if Pten deletion in epithelia alone will induce tumorigenesis. We found that mice with uterine epithelial loss of Pten under a Ltf-iCre driver (Ptenf/f/LtfCre/+) develop uterine complex atypical hyperplasia (CAH), but rarely EMC even at 6 months of age. We observed that Ptenf/fPgrCre/+ uteri exhibit a unique population of cytokeratin 5 (CK5) and transformation related protein 63 (p63)-positive epithelial cells; these cells mark stratified epithelia and squamous differentiation. In contrast, Ptenf/fLtfCre/+ hyperplastic epithelia do not undergo stratification, but extensive epithelial cell apoptosis. This increased apoptosis is associated with elevation of TGFß levels and activation of downstream effectors, SMAD2/3 in the uterine stroma. Our results suggest that stromal PTEN via TGFß signaling restrains epithelial cell transformation from hyperplasia to carcinoma. In conclusion, this study, using tissue-specific deletion of Pten, highlights the epithelial-mesenchymal cross-talk in the genesis of endometrial carcinoma.


Subject(s)
Endometrial Neoplasms/genetics , Endometrium/metabolism , Epithelium/pathology , PTEN Phosphohydrolase/genetics , Uterus/pathology , Animals , Apoptosis , Carcinogenesis , Cell Proliferation , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Epithelial Cells/metabolism , Female , Gene Deletion , Gene Expression Regulation , Hyperplasia/genetics , Hyperplasia/pathology , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Mutation , Myometrium/cytology , Myometrium/metabolism , PTEN Phosphohydrolase/metabolism , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Stromal Cells/metabolism , Uterus/cytology
16.
PLoS One ; 12(11): e0188641, 2017.
Article in English | MEDLINE | ID: mdl-29190668

ABSTRACT

Although histological grade and muscular invasion are related to the malignant behaviors of endometrial endometrioid carcinoma, lymphatic and/or distant metastases are unexpectedly encountered, even in patients in the low-risk group. To re-evaluate additional reliable parameters to predict the risk of progression, we examined the immunohistochemical expression profiles of p53 and estrogen receptor (ER) ß proteins. Patients with endometrial endometrioid carcinoma who underwent surgical treatment at our hospital (n = 154) were recruited to this study, and the significance of the relationships between the incidence of regional lymph node metastasis and/or postoperative recurrence and clinical or experimental parameters was evaluated. By multivariate analysis, we found that histological grades, detection of immunoreactive p53 (positive rates more than 10%, p53-stained), and high expression of ERß (high-ERß) were independently associated with metastasis and/or recurrence. Among these parameters, the sensitivity and negative predictive values of high-ERß were very high (up to 100%). In the population with high-ERß, the positive rates of metastasis and/or recurrence were 61.1% in the p53-stained group and 21.9% in the p53-non-stained (negative) group. Furthermore, the positive rate in the group showing myometrial invasion of more than 1/2 and showing both p53-stained and high-ERß was 80%. The disease-free survival of patients who were double-positive for p53-stained and high-ERß was significantly shorter than that in other patients. In summary, our findings showed that increases in ERß and p53 immunoreactivity were significantly correlated with the incidence of metastasis and/or recurrence in endometrial endometrioid carcinoma, suggesting that double-positivity for p53-stained and high-ERß may provide a promising clinical indicator to predict the risk of progression.


Subject(s)
Carcinoma, Endometrioid/metabolism , Endometrial Neoplasms/metabolism , Estrogen Receptor beta/metabolism , Lymphatic Metastasis , Tumor Suppressor Protein p53/metabolism , Adult , Aged , Aged, 80 and over , Carcinoma, Endometrioid/pathology , Carcinoma, Endometrioid/surgery , Endometrial Neoplasms/pathology , Endometrial Neoplasms/surgery , Female , Humans , Middle Aged , Mutation , Postoperative Period , Recurrence , Tumor Suppressor Protein p53/genetics , Young Adult
17.
J Reprod Infertil ; 18(2): 231-241, 2017.
Article in English | MEDLINE | ID: mdl-28868248

ABSTRACT

BACKGROUND: The opening and closing of the implantation window is important for successful pregnancy in eutherians. The recent study demonstrated that the window of uterine receptivity was prepared by the sole action of progesterone in mice, but the mechanism to close the window remained to be elucidated. METHODS: The pregnant mice were ovariectomized on the evening on the third day of pregnancy with a single injection of medroxyprogesterone acetate to induce delayed implantation (DI). Several treatments were applied to DI mice. The uterine receptivity after treatment was assessed by examining cell proliferation in the uterine luminal epithelium (LE). The gene expressions in the endometrium were investigated by RNA-seq. The p<0.05 was considered significant. RESULTS: Cell proliferation in the LE ceased only when the window of implantation was open. Estrogen (E2) stimulated cell proliferation in the LE rendered the uterus refractory. The high throughput gene expression analysis by RNA-Seq showed that the insulin-like growth factor 1 (IGF1) pathway was the candidate to close the implantation window under E2. In vivo administration of IGF1 to delayed implantation mice resulted in proliferation in the LE cells. CONCLUSION: This study demonstrated that the window of uterine receptivity was closed by E2, which was mediated by the IGF1 pathway.

18.
Mol Endocrinol ; 30(7): 783-95, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27164167

ABSTRACT

Cell fate of lower Müllerian duct epithelium (MDE), to become uterine or vaginal epithelium, is determined by the absence or presence of ΔNp63 expression, respectively. Previously, we showed that SMAD4 and runt-related transcription factor 1 (RUNX1) were independently required for MDE to express ΔNp63. Here, we report that vaginal mesenchyme directs vaginal epithelial cell fate in MDE through paracrine activation of fibroblast growth factor (FGF) receptor-MAPK pathway. In the developing reproductive tract, FGF7 and FGF10 were enriched in vaginal mesenchyme, whereas FGF receptor 2IIIb was expressed in epithelia of both the uterus and vagina. When Fgfr2 was inactivated, vaginal MDE underwent uterine cell fate, and this differentiation defect was corrected by activation of MEK-ERK pathway. In vitro, FGF10 in combination with bone morphogenetic protein 4 and activin A (ActA) was sufficient to induce ΔNp63 in MDE, and ActA was essential for induction of RUNX1 through SMAD-independent pathways. Accordingly, inhibition of type 1 receptors for activin in neonatal mice induced uterine differentiation in vaginal epithelium by down-regulating RUNX1, whereas conditional deletion of Smad2 and Smad3 had no effect on vaginal epithelial differentiation. In conclusion, vaginal epithelial cell fate in MDE is induced by FGF7/10-MAPK, bone morphogenetic protein 4-SMAD, and ActA-RUNX1 pathway activities, and the disruption in any one of these pathways results in conversion from vaginal to uterine epithelial cell fate.


Subject(s)
Epithelial Cells/metabolism , Mitogen-Activated Protein Kinases/metabolism , Mullerian Ducts/cytology , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Animals , Animals, Newborn , Benzodioxoles/pharmacology , Cell Differentiation/genetics , Cell Differentiation/physiology , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Epithelial Cells/cytology , Female , Fibroblast Growth Factor 10/genetics , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 7/genetics , Fibroblast Growth Factor 7/metabolism , Fluorescent Antibody Technique , Imidazoles/pharmacology , Mice , Mice, Knockout , Mitogen-Activated Protein Kinases/genetics , Pyridines/pharmacology , Real-Time Polymerase Chain Reaction , Receptor, Fibroblast Growth Factor, Type 2/genetics , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism , Uterus/cytology , Vagina/cytology
19.
Mol Cell ; 61(2): 187-98, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26774281

ABSTRACT

While cellular GTP concentration dramatically changes in response to an organism's cellular status, whether it serves as a metabolic cue for biological signaling remains elusive due to the lack of molecular identification of GTP sensors. Here we report that PI5P4Kß, a phosphoinositide kinase that regulates PI(5)P levels, detects GTP concentration and converts them into lipid second messenger signaling. Biochemical analyses show that PI5P4Kß preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation, and its activity reflects changes in direct proportion to the physiological GTP concentration. Structural and biological analyses reveal that the GTP-sensing activity of PI5P4Kß is critical for metabolic adaptation and tumorigenesis. These results demonstrate that PI5P4Kß is the missing GTP sensor and that GTP concentration functions as a metabolic cue via PI5P4Kß. The critical role of the GTP-sensing activity of PI5P4Kß in cancer signifies this lipid kinase as a cancer therapeutic target.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Guanosine Triphosphate/metabolism , Intracellular Space/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Cell Proliferation , Crystallography, X-Ray , HEK293 Cells , Humans , Hydrolysis , Kinetics , Mice , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Binding , Proteomics , Signal Transduction
20.
Am J Pathol ; 184(9): 2390-402, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25058027

ABSTRACT

The underlying causes of endometrial cancer (EMC) are poorly understood, and treatment options for patients with advanced stages of the disease are limited. Mutations in the phosphatase and tensin homologue gene are frequently detected in EMC. Cyclooxygenase 2 (Cox2) and mammalian target of rapamycin complex 1 (mTORC1) are known downstream targets of the phosphatase and tensin homologue protein, and their activities are up-regulated in EMC. However, it is not clear whether Cox2 and mTORC1 are crucial players in cancer progression or whether they work in parallel or cooperatively. In this study, we used a Cox2 inhibitor, celecoxib, and an mTORC1 inhibitor, rapamycin, in mouse models of EMC and in human EMC cell lines to explore the interactive roles of Cox2 and mTORC1 signaling. We found that a combined treatment with celecoxib and rapamycin markedly reduces EMC progression. We also observed that rapamycin reduces Cox2 expression, whereas celecoxib reduces mTORC1 activity. These results suggest that Cox2 and mTORC1 signaling is cross-regulated and cooperatively exacerbate EMC.


Subject(s)
Carcinoma/metabolism , Cyclooxygenase 2/metabolism , Endometrial Neoplasms/metabolism , Multiprotein Complexes/metabolism , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Blotting, Western , Carcinoma/pathology , Celecoxib , Cell Line, Tumor , Cell Survival/drug effects , Cyclooxygenase 2 Inhibitors/pharmacology , Disease Models, Animal , Endometrial Neoplasms/pathology , Female , Humans , Immunohistochemistry , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Knockout , Pyrazoles/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Sirolimus/pharmacology , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL