Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Transl Med ; 22(1): 234, 2024 Mar 03.
Article En | MEDLINE | ID: mdl-38433235

INTRODUCTION: The study of resistance-causing mutations in oncogene-driven tumors is fundamental to guide clinical decisions. Several point mutations affecting the ROS1 kinase domain have been identified in the clinical setting, but their impact requires further exploration, particularly in improved pre-clinical models. Given the scarcity of solid pre-clinical models to approach rare cancer subtypes like ROS1 + NSCLC, CRISPR/Cas9 technology allows the introduction of mutations in patient-derived cell lines for which resistant variants are difficult to obtain due to the low prevalence of cases within the clinical setting. METHODS: In the SLC34A2-ROS1 rearranged NSCLC cell line HCC78, we knocked-in through CRISPR/Cas9 technology three ROS1 drug resistance-causing mutations: G2032R, L2026M and S1986Y. Such variants are located in different functional regions of the ROS1 kinase domain, thus conferring TKI resistance through distinct mechanisms. We then performed pharmacological assays in 2D and 3D to assess the cellular response of the mutant lines to crizotinib, entrectinib, lorlatinib, repotrectinib and ceritinib. In addition, immunoblotting assays were performed in 2D-treated cell lines to determine ROS1 phosphorylation and MAP kinase pathway activity. The area over the curve (AOC) defined by the normalized growth rate (NGR_fit) dose-response curves was the variable used to quantify the cellular response towards TKIs. RESULTS: Spheroids derived from ROS1G2032R cells were significantly more resistant to repotrectinib (AOC fold change = - 7.33), lorlatinib (AOC fold change = - 6.17), ceritinib (AOC fold change = - 2.8) and entrectinib (AOC fold change = - 2.02) than wild type cells. The same cells cultured as a monolayer reflected the inefficacy of crizotinib (AOC fold change = - 2.35), entrectinib (AOC fold change = - 2.44) and ceritinib (AOC fold change = - 2.12) in targeting the ROS1 G2032R mutation. ROS1L2026M cells showed also remarkable resistance both in monolayer and spheroid culture compared to wild type cells, particularly against repotrectinib (spheroid AOC fold change = - 2.19) and entrectinib (spheroid AOC fold change = - 1.98). ROS1S1986Y cells were resistant only towards crizotinib in 2D (AOC fold change = - 1.86). Overall, spheroids showed an increased TKI sensitivity compared to 2D cultures, where the impact of each mutation that confers TKI resistance could be clearly distinguished. Western blotting assays qualitatively reflected the patterns of response towards TKI observed in 2D culture through the levels of phosphorylated-ROS1. However, we observed a dose-response increase of phosphorylated-Erk1/2, suggesting the involvement of the MAPK pathway in the mediation of apoptosis in HCC78 cells. CONCLUSION: In this study we knock-in for the first time in a ROS1 + patient-derived cell line, three different known resistance-causing mutations using CRISPR/Cas9 in the endogenous translocated ROS1 alleles. Pharmacological assays performed in 2D and 3D cell culture revealed that spheroids are more sensitive to TKIs than cells cultured as a monolayer. This direct comparison between two culture systems could be done thanks to the implementation of normalized growth rates (NGR) to uniformly quantify drug response between 2D and 3D cell culture. Overall, this study presents the added value of using spheroids and positions lorlatinib and repotrectinib as the most effective TKIs against the studied ROS1 resistance point mutations.


Aminopyridines , Benzamides , Carcinoma, Non-Small-Cell Lung , Indazoles , Lactams , Lung Neoplasms , Pyrazoles , Pyrimidines , Sulfones , Humans , Protein-Tyrosine Kinases/genetics , Crizotinib , CRISPR-Cas Systems/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Proto-Oncogene Proteins , Drug Resistance
2.
Lung Cancer ; 180: 107192, 2023 06.
Article En | MEDLINE | ID: mdl-37068393

Non-small cell lung cancer (NSCLC) is a heterogeneous group of diseases which accounts for 80% of newly diagnosed lung cancers. In the previous decade, a new molecular subset of NSCLC patients (around 2%) harboring rearrangements of the c-ros oncogene 1 was defined. ROS1+ NSCLC is typically diagnosed in young, nonsmoker individuals presenting an adenocarcinoma histology. Patients can benefit from tyrosine kinase inhibitors (TKIs) such as crizotinib and entrectinib, compounds initially approved to treat ALK-, MET- or NTRK- rearranged malignancies respectively. Given the low prevalence of ROS1-rearranged tumors, the use of TKIs was authorized based on pre-clinical evidence using limited experimental models, followed by basket clinical trials. After initiating targeted therapy, disease relapse is reported in approximately 50% of cases as a result of the appearance of resistance mechanisms. The restricted availability of TKIs active against resistance events critically reduces the overall survival. In this review we discuss the pre-clinical ROS1+ NSCLC models developed up to date, highlighting their strengths and limitations with respect to the unmet clinical needs. By combining gene-editing tools and novel cell culture approaches, newly developed pre-clinical models will enhance the development of next-generation tyrosine kinase inhibitors that overcome resistant tumor cell subpopulations.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Protein-Tyrosine Kinases/genetics , Anaplastic Lymphoma Kinase , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins/genetics , Neoplasm Recurrence, Local/drug therapy , Oncogenes , Gene Rearrangement
...