Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
EBioMedicine ; 106: 105234, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970920

ABSTRACT

BACKGROUND: The most near-term clinical application of genome-wide association studies in lung cancer is a polygenic risk score (PRS). METHODS: A case-control dataset was generated consisting of 4002 lung cancer cases from the LORD project and 20,010 ethnically matched controls from CARTaGENE. A genome-wide PRS including >1.1 million genetic variants was derived and validated in UK Biobank (n = 5419 lung cancer cases). The predictive ability and diagnostic discrimination performance of the PRS was tested in LORD/CARTaGENE and benchmarked against previous PRSs from the literature. Stratified analyses were performed by smoking status and genetic risk groups defined as low (<20th percentile), intermediate (20-80th percentile) and high (>80th percentile) PRS. FINDINGS: The phenotypic variance explained and the effect size of the genome-wide PRS numerically outperformed previous PRSs. Individuals with high genetic risk had a 2-fold odds of lung cancer compared to low genetic risk. The PRS was an independent predictor of lung cancer beyond conventional clinical risk factors, but its diagnostic discrimination performance was incremental in an integrated risk model. Smoking increased the odds of lung cancer by 7.7-fold in low genetic risk and by 11.3-fold in high genetic risk. Smoking with high genetic risk was associated with a 17-fold increase in the odds of lung cancer compared to individuals who never smoked and with low genetic risk. INTERPRETATION: Individuals at low genetic risk are not protected against the smoking-related risk of lung cancer. The joint multiplicative effect of PRS and smoking increases the odds of lung cancer by nearly 20-fold. FUNDING: This work was supported by the CQDM and the IUCPQ Foundation owing to a generous donation from Mr. Normand Lord.

2.
J Am Heart Assoc ; 13(12): e035128, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38879450

ABSTRACT

Cardiac troponin is extensively used as a biomarker in modern medicine due to its diagnostic capability for myocardial injury, as well as its predictive and prognostic value for cardiac diseases. However, heterophile antibodies, antitroponin antibodies, and macrotroponin complexes can be observed both in seemingly healthy individuals and patients with cardiac diseases, potentially leading to false positive or disproportionate elevation of cTn (cardiac troponin) assay results and introducing discrepancies in clinical interpretations with impact on medical management. In this review article, we describe the possible mechanisms of cTn release and the sources of variations in the assessment of circulating cTn levels. We also explore the pathophysiological mechanisms underlying antitroponin antibody development and discuss the influence exerted by macrotroponin complexes on the results of immunoassays. Additionally, we explore approaches to detect these complexes by presenting various clinical scenarios encountered in routine clinical practice. Finally, unsolved questions about the development, prevalence, and clinical significance of cardiac autoantibodies are discussed.


Subject(s)
Autoantibodies , Biomarkers , Humans , Biomarkers/blood , Autoantibodies/blood , Heart Diseases/diagnosis , Heart Diseases/blood , Heart Diseases/immunology , Predictive Value of Tests , Troponin I/blood , Troponin I/immunology , Prognosis
3.
Eur Heart J Open ; 4(3): oeae043, 2024 May.
Article in English | MEDLINE | ID: mdl-38933427

ABSTRACT

Aims: Anticoagulants are routinely used by millions of patients worldwide to prevent blood clots. Yet, problems with anticoagulant therapy remain, including a persistent and cumulative bleeding risk in patients undergoing prolonged anticoagulation. New safer anticoagulant targets are needed. Methods and results: To prioritize anticoagulant targets with the strongest efficacy [venous thromboembolism (VTE) prevention] and safety (low bleeding risk) profiles, we performed two-sample Mendelian randomization and genetic colocalization. We leveraged three large-scale plasma protein data sets (deCODE as discovery data set and Fenland and Atherosclerosis Risk in Communities as replication data sets] and one liver gene expression data set (Institut Universitaire de Cardiologie et de Pneumologie de Québec bariatric biobank) to evaluate evidence for a causal effect of 26 coagulation cascade proteins on VTE from a new genome-wide association meta-analysis of 44 232 VTE cases and 847 152 controls, stroke subtypes, bleeding outcomes, and parental lifespan as an overall measure of efficacy/safety ratio. A 1 SD genetically predicted reduction in F2 blood levels was associated with lower risk of VTE [odds ratio (OR) = 0.44, 95% confidence interval (CI) = 0.38-0.51, P = 2.6e-28] and cardioembolic stroke risk (OR = 0.55, 95% CI = 0.39-0.76, P = 4.2e-04) but not with bleeding (OR = 1.13, 95% CI = 0.93-1.36, P = 2.2e-01). Genetically predicted F11 reduction was associated with lower risk of VTE (OR = 0.61, 95% CI = 0.58-0.64, P = 4.1e-85) and cardioembolic stroke (OR = 0.77, 95% CI = 0.69-0.86, P = 4.1e-06) but not with bleeding (OR = 1.01, 95% CI = 0.95-1.08, P = 7.5e-01). These Mendelian randomization associations were concordant across the three blood protein data sets and the hepatic gene expression data set as well as colocalization analyses. Conclusion: These results provide strong genetic evidence that F2 and F11 may represent safe and efficacious therapeutic targets to prevent VTE and cardioembolic strokes without substantially increasing bleeding risk.

4.
PLoS Genet ; 20(5): e1011301, 2024 May.
Article in English | MEDLINE | ID: mdl-38814983

ABSTRACT

Whether single-cell RNA-sequencing (scRNA-seq) captures the same biological information as single-nucleus RNA-sequencing (snRNA-seq) remains uncertain and likely to be context-dependent. Herein, a head-to-head comparison was performed in matched normal-adenocarcinoma human lung samples to assess biological insights derived from scRNA-seq versus snRNA-seq and better understand the cellular transition that occurs from normal to tumoral tissue. Here, the transcriptome of 160,621 cells/nuclei was obtained. In non-tumor lung, cell type proportions varied widely between scRNA-seq and snRNA-seq with a predominance of immune cells in the former (81.5%) and epithelial cells (69.9%) in the later. Similar results were observed in adenocarcinomas, in addition to an overall increase in cell type heterogeneity and a greater prevalence of copy number variants in cells of epithelial origin, which suggests malignant assignment. The cell type transition that occurs from normal lung tissue to adenocarcinoma was not always concordant whether cells or nuclei were examined. As expected, large differential expression of the whole-cell and nuclear transcriptome was observed, but cell-type specific changes of paired normal and tumor lung samples revealed a set of common genes in the cells and nuclei involved in cancer-related pathways. In addition, we showed that the ligand-receptor interactome landscape of lung adenocarcinoma was largely different whether cells or nuclei were evaluated. Immune cell depletion in fresh specimens partly mitigated the difference in cell type composition observed between cells and nuclei. However, the extra manipulations affected cell viability and amplified the transcriptional signatures associated with stress responses. In conclusion, research applications focussing on mapping the immune landscape of lung adenocarcinoma benefit from scRNA-seq in fresh samples, whereas snRNA-seq of frozen samples provide a low-cost alternative to profile more epithelial and cancer cells, and yield cell type proportions that more closely match tissue content.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Sequence Analysis, RNA , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/immunology , Sequence Analysis, RNA/methods , Cell Nucleus/genetics , Transcriptome/genetics , Gene Expression Regulation, Neoplastic , Lung/metabolism , Lung/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , RNA, Small Nuclear/genetics , RNA-Seq/methods , Gene Expression Profiling/methods , DNA Copy Number Variations/genetics
5.
Atherosclerosis ; 393: 117558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703417

ABSTRACT

BACKGROUND: Carriers of the E40K loss-of-function variant in Angiopoietin-like 4 (ANGPTL4), have lower plasma triglyceride levels as well as lower rates of coronary artery disease (CAD) and type 2 diabetes (T2D). These genetic data suggest ANGPTL4 inhibition as a potential therapeutic target for cardiometabolic diseases. However, it is unknown whether the association between E40K and human diseases is due to linkage disequilibrium confounding. The broader impact of genetic ANGPTL4 inhibition is also unknown, raising uncertainties about the safety and validity of this target. METHODS: To assess the impact of ANGPLT4 inhibition, we evaluated whether E40K and other loss-of-function variants in ANGPTL4 influenced a wide range of health markers and diseases using 29 publicly available genome-wide association meta-analyses of cardiometabolic traits and diseases, as well as 1589 diseases assessed in electronic health records within FinnGen (n = 309,154). To determine whether these relationships were likely causal, and not driven by other correlated variants, we used the Bayesian fine mapping algorithm CoPheScan. RESULTS: The CoPheScan posterior probability of E40K being the causal variant for triglyceride levels was 99.99 %, validating the E40K to proxy lifelong lower activity of ANGPTL4. The E40K variant was associated with lower risk of CAD (odds ratio [OR] = 0.84, 95 % CI = 0.81 to 0.87, p=3.6e-21) and T2D (OR = 0.91, 95 % CI = 0.87 to 0.95, p=2.8e-05) in GWAS meta-analyses, with results replicated in FinnGen. These significant results were also replicated using other rare loss-of-function variants identified through whole exome sequencing in 488,278 participants of the UK Biobank. Using a Mendelian randomization study design, the E40K variant effect on cardiometabolic diseases was concordant with lipoprotein lipase enhancement (r = 0.82), but not hepatic lipase enhancement (r = -0.10), suggesting that ANGPTL4 effects on cardiometabolic diseases are potentially mainly mediated through lipoprotein lipase. After correction for multiple testing, the E40K variant did not significantly increase the risk of any of the 1589 diseases tested in FinnGen. CONCLUSIONS: ANGPTL4 inhibition may represent a potentially safe and effective target for cardiometabolic diseases prevention or treatment.


Subject(s)
Angiopoietin-Like Protein 4 , Genome-Wide Association Study , Phenotype , Humans , Angiopoietin-Like Protein 4/genetics , Angiopoietin-Like Protein 4/metabolism , Loss of Function Mutation , Genetic Predisposition to Disease , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Triglycerides/blood , Coronary Artery Disease/genetics , Bayes Theorem , Risk Factors , Lipoprotein Lipase
6.
Nat Commun ; 15(1): 2407, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494474

ABSTRACT

There is currently no medical therapy to prevent calcific aortic valve stenosis (CAVS). Multi-omics approaches could lead to the identification of novel molecular targets. Here, we perform a genome-wide association study (GWAS) meta-analysis including 14,819 cases among 941,863 participants of European ancestry. We report 32 genomic loci, among which 20 are novel. RNA sequencing of 500 human aortic valves highlights an enrichment in expression regulation at these loci and prioritizes candidate causal genes. Homozygous genotype for a risk variant near TWIST1, a gene involved in endothelial-mesenchymal transition, has a profound impact on aortic valve transcriptomics. We identify five genes outside of GWAS loci by combining a transcriptome-wide association study, colocalization, and Mendelian randomization analyses. Using cross-phenotype and phenome-wide approaches, we highlight the role of circulating lipoproteins, blood pressure and inflammation in the disease process. Our findings pave the way for the development of novel therapies for CAVS.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Aortic Valve/pathology , Calcinosis , Humans , Aortic Valve/metabolism , Genome-Wide Association Study , Aortic Valve Stenosis/genetics , Genomics
7.
medRxiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38496537

ABSTRACT

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to genes involved in neurological, thyroidal, bone metabolism, and hematopoietic pathways. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausibility of distinct influences of both sleep duration extremes in cardiovascular health. With several of our loci reflecting specificity towards population background or sex, our discovery sheds light on the importance of embracing granularity when addressing heterogeneity entangled in gene-environment interactions, and in therapeutic design approaches for blood pressure management.

8.
Eur Heart J ; 45(9): 707-721, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38243829

ABSTRACT

BACKGROUND AND AIMS: RNA-based, antibody-based, and genome editing-based therapies are currently under investigation to determine if the inhibition of angiopoietin-like protein-3 (ANGPTL3) could reduce lipoprotein-lipid levels and atherosclerotic cardiovascular disease (ASCVD) risk. Mendelian randomisation (MR) was used to determine whether genetic variations influencing ANGPTL3 liver gene expression, blood levels, and protein structure could causally influence triglyceride and apolipoprotein B (apoB) levels as well as coronary artery disease (CAD), ischaemic stroke (IS), and other cardiometabolic diseases. METHODS: RNA sequencing of 246 explanted liver samples and genome-wide genotyping was performed to identify single-nucleotide polymorphisms (SNPs) associated with liver expression of ANGPTL3. Genome-wide summary statistics of plasma protein levels of ANGPTL3 from the deCODE study (n = 35 359) were used. A total of 647 carriers of ANGPTL3 protein-truncating variants (PTVs) associated with lower plasma triglyceride levels were identified in the UK Biobank. Two-sample MR using SNPs that influence ANGPTL3 liver expression or ANGPTL3 plasma protein levels as exposure and cardiometabolic diseases as outcomes was performed (CAD, IS, heart failure, non-alcoholic fatty liver disease, acute pancreatitis, and type 2 diabetes). The impact of rare PTVs influencing plasma triglyceride levels on apoB levels and CAD was also investigated in the UK Biobank. RESULTS: In two-sample MR studies, common genetic variants influencing ANGPTL3 hepatic or blood expression levels of ANGPTL3 had a very strong effect on plasma triglyceride levels, a more modest effect on low-density lipoprotein cholesterol, a weaker effect on apoB levels, and no effect on CAD or other cardiometabolic diseases. In the UK Biobank, the carriers of rare ANGPTL3 PTVs providing lifelong reductions in median plasma triglyceride levels [-0.37 (interquartile range 0.41) mmol/L] had slightly lower apoB levels (-0.06 ± 0.32 g/L) and similar CAD event rates compared with non-carriers (10.2% vs. 10.9% in carriers vs. non-carriers, P = .60). CONCLUSIONS: PTVs influencing ANGPTL3 protein structure as well as common genetic variants influencing ANGPTL3 hepatic expression and/or blood protein levels exhibit a strong effect on circulating plasma triglyceride levels, a weak effect on circulating apoB levels, and no effect on ASCVD. Near-complete inhibition of ANGPTL3 function in patients with very elevated apoB levels may be required to reduce ASCVD risk.


Subject(s)
Atherosclerosis , Brain Ischemia , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Pancreatitis , Stroke , Humans , Acute Disease , Coronary Artery Disease/genetics , Angiopoietin-Like Protein 3 , Antibodies , Apolipoproteins B/genetics , Triglycerides
9.
Circ Genom Precis Med ; 16(5): 470-477, 2023 10.
Article in English | MEDLINE | ID: mdl-37753708

ABSTRACT

BACKGROUND: Lp(a) (lipoprotein[a]) is a highly atherogenic lipoprotein subfraction that may contribute to polygenic risk of coronary artery disease (CAD), but the extent of this contribution is unknown. Our objective was to estimate the contribution of Lp(a) to polygenic risk of CAD and to evaluate the respective contributions of Lp(a) and a CAD polygenic risk score (PRS) to CAD. METHODS: A total of 372 385 UK Biobank participants of European ancestry free of CAD at baseline were included. Plasma Lp(a) levels were measured and a CAD-PRS was calculated using the LDpred2 algorithm. Over the median follow-up of 12.6 years, 13 538 participants had incident CAD (myocardial infarction, coronary artery bypass grafting, or coronary angioplasty). RESULTS: The LPA region contribution to the CAD-PRS-mediated CAD risk was modest (7.2% [95% CI, 6.1-8.3]). Lp(a) levels significantly increased the predictive performance of a CAD-PRS including age and sex in Cox regression (C statistic 0.751 versus 0.746, difference, 0.005 [95% CI, 0.004-0.006]). Compared with participants in the bottom CAD-PRS quintile with Lp(a) levels <25 nmol/L (CAD event rate, 1.4%), the hazard ratio for incident CAD in participants in the top CAD-PRS quintile with Lp(a) levels ≥125 nmol/L was 5.45 (95% CI, 4.93-6.03; P=9.35×10-242, CAD event rate 6.6%). CONCLUSIONS: Compared with individuals with a low genetic risk of CAD (low CAD-PRS and low Lp[a] levels), those with a high genetic risk (high CAD-PRS and high Lp[a] levels) had a 5-fold higher CAD risk. These results highlight a substantial contribution of genetic risk factors to CAD and that accurate estimation of genetic risk of CAD may need to consider blood levels of Lp(a).


Subject(s)
Coronary Artery Disease , Humans , Coronary Artery Disease/genetics , Prospective Studies , Lipoprotein(a)/genetics , Biological Specimen Banks , Risk Factors , United Kingdom/epidemiology
10.
iScience ; 26(7): 107127, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37456853

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent disease with no specific drug therapy. High-throughput metabolomics present an unprecedented opportunity to identify biomarkers and potentially causal risk factors for NAFLD. Here, we determined the impact of 21 circulating metabolites, 17 lipids, and 132 lipoprotein particle characteristics on NAFLD combining prospective observational and two-sample Mendelian randomization (MR) analyses in 121,032 UK Biobank participants. We identified several metabolic factors associated with NAFLD risk in observational and MR analyses including triglyceride-rich and high-density lipoprotein particles composition, as well as the ratio of polyunsaturated fatty acids to total fatty acids. This study, is one of the largest to investigate incident NAFLD, provides concordant observational and genetic evidence that therapies aimed at reducing circulating triglycerides and increasing large HDL particles, as well as interventions aimed at increasing polyunsaturated fatty acid content may warrant further investigation into NAFLD prevention and treatment.

11.
J Am Heart Assoc ; 12(13): e028502, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37345817

ABSTRACT

Background The impact of an elevated body mass index (BMI) on atherosclerotic cardiovascular disease (ASCVD) risk in individuals who are metabolically healthy is debated. We investigated the respective contributions of BMI as well as lifestyle and cardiometabolic risk factors combined to ASCVD incidence in 319 866 UK Biobank participants. Methods and Results We developed a cardiovascular health score (CVHS) based on 4 lifestyle and 6 cardiometabolic parameters. The impact of the CVHS on incident ASCVD (15 699 events) alone and in BMI and waist-to-hip ratio categories was assessed using Cox proportional hazards in women and men separately. In participants with a high CVHS (8-10), those with a BMI ≥35.0 kg/m2 had a nonsignificantly higher ASCVD risk (hazard ratio [HR], 1.20 [95% CI, 0.84-1.70]; P=0.32) compared with those with a BMI of 18.5 to 24.9 kg/m2. In participants with a BMI of 18.5 to 24.9 kg/m2, those with a lower CVHS (0-2) had a higher ASCVD risk (HR, 4.06 [95% CI, 3.23-5.10]; P<0.001) compared with those with a higher CVHS (8-10). When we used the waist-to-hip ratio instead of the BMI, a dose-response relationship between the waist-to-hip ratio and ASCVD risk was obtained in healthier participants. Results were similar in women compared with men. Conclusions In women and men in the UK Biobank, the relationship between the BMI and ASCVD incidence in healthy individuals was inconsistent, whereas cardiovascular risk factors strongly predicted ASCVD incidence in all BMI categories. Assessing lifestyle and cardiometabolic risk factors as well as body fat distribution indices may help identify individuals at high ASCVD risk, regardless of body weight.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Male , Humans , Female , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Incidence , Body Mass Index , Atherosclerosis/diagnosis , Atherosclerosis/epidemiology , Body Weight , Risk Factors
13.
Eur Heart J Open ; 3(2): oead032, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37077580

ABSTRACT

Aims: Elevated lipoprotein(a) [Lp(a)] levels are associated with the risk of coronary artery disease (CAD) and calcific aortic valve stenosis (CAVS). Observational studies revealed that Lp(a) and C-reactive protein (CRP) levels, a biomarker of systemic inflammation, may jointly predict CAD risk. Whether Lp(a) and CRP levels also jointly predict CAVS incidence and progression is unknown. Methods and results: We investigated the association of Lp(a) with CAVS according to CRP levels in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk study (n = 18 226, 406 incident cases) and the UK Biobank (n = 438 260, 4582 incident cases), as well as in the ASTRONOMER study (n = 220), which assessed the haemodynamic progression rate of pre-existing mild-to-moderate aortic stenosis. In EPIC-Norfolk, in comparison to individuals with low Lp(a) levels (<50 mg/dL) and low CRP levels (<2.0 mg/L), those with elevated Lp(a) (>50 mg/dL) and low CRP levels (<2.0 mg/L) and those with elevated Lp(a) (>50 mg/dL) and elevated CRP levels (>2.0 mg/L) had a higher CAVS risk [hazard ratio (HR) = 1.86 (95% confidence intervals, 1.30-2.67) and 2.08 (1.44-2.99), respectively]. A comparable predictive value of Lp(a) in patients with vs. without elevated CRP levels was also noted in the UK Biobank. In ASTRONOMER, CAVS progression was comparable in patients with elevated Lp(a) levels with or without elevated CRP levels. Conclusion: Lp(a) predicts the incidence and possibly progression of CAVS regardless of plasma CRP levels. Lowering Lp(a) levels may warrant further investigation in the prevention and treatment of CAVS, regardless of systemic inflammation.

14.
Nat Commun ; 14(1): 1411, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918541

ABSTRACT

The 3-dimensional spatial and 2-dimensional frontal QRS-T angles are measures derived from the vectorcardiogram. They are independent risk predictors for arrhythmia, but the underlying biology is unknown. Using multi-ancestry genome-wide association studies we identify 61 (58 previously unreported) loci for the spatial QRS-T angle (N = 118,780) and 11 for the frontal QRS-T angle (N = 159,715). Seven out of the 61 spatial QRS-T angle loci have not been reported for other electrocardiographic measures. Enrichments are observed in pathways related to cardiac and vascular development, muscle contraction, and hypertrophy. Pairwise genome-wide association studies with classical ECG traits identify shared genetic influences with PR interval and QRS duration. Phenome-wide scanning indicate associations with atrial fibrillation, atrioventricular block and arterial embolism and genetically determined QRS-T angle measures are associated with fascicular and bundle branch block (and also atrioventricular block for the frontal QRS-T angle). We identify potential biology involved in the QRS-T angle and their genetic relationships with cardiovascular traits and diseases, may inform future research and risk prediction.


Subject(s)
Atrioventricular Block , Cardiovascular Diseases , Humans , Cardiovascular Diseases/genetics , Genome-Wide Association Study , Risk Factors , Arrhythmias, Cardiac/genetics , Electrocardiography/methods , Biomarkers
15.
Gastroenterology ; 164(6): 953-965.e3, 2023 05.
Article in English | MEDLINE | ID: mdl-36736436

ABSTRACT

BACKGROUND & AIMS: Acute pancreatitis (AP) is a complex disease and the leading cause of gastrointestinal disease-related hospital admissions. Few therapeutic options exist for AP prevention. Blood proteins with causal evidence may represent promising drug targets, but few have been causally linked with AP. Our objective was to identify blood proteins linked with AP by combining genome-wide association meta-analysis and proteome-wide Mendelian randomization (MR) studies. METHODS: We performed a genome-wide association meta-analysis totalling 10,630 patients with AP and 844,679 controls and a series of inverse-variance weighted MR analyses using cis-acting variants on 4719 blood proteins from the deCODE study (N = 35,559) and 4979 blood proteins from the Fenland study (N = 10,708). RESULTS: The meta-analysis identified genome-wide significant variants (P <5 × 10-8) at 5 loci (ABCG5/8, TWIST2, SPINK1, PRSS2 and MORC4). The proteome-wide MR analyses identified 68 unique blood proteins that may causally be associated with AP, including 29 proteins validated in both data sets. Functional annotation of these proteins confirmed expression of many proteins in metabolic tissues responsible for digestion and energy metabolism, such as the esophagus, adipose tissue, and liver as well as acinar cells of the pancreas. Genetic colocalization and investigations into the druggable genome also identified potential drug targets for AP. CONCLUSIONS: This large genome-wide association study meta-analysis for AP identified new variants linked with AP as well as several blood proteins that may be causally associated with AP. This study provides new information on the genetic architecture of this disease and identified pathways related to AP, which may be further explored as possible therapeutic targets for AP.


Subject(s)
Pancreatitis , Proteome , Humans , Proteome/genetics , Mendelian Randomization Analysis , Genome-Wide Association Study , Acute Disease , Pancreatitis/genetics , Blood Proteins , Polymorphism, Single Nucleotide , Trypsin/genetics , Trypsinogen/genetics , Trypsin Inhibitor, Kazal Pancreatic/genetics , Nuclear Proteins/genetics
16.
J Anal Toxicol ; 47(4): 385-392, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-36715069

ABSTRACT

Bromazolam is a designer benzodiazepine that was first detected in British Columbia in January 2021. Postmortem cases were analyzed using a comprehensive blood drug screening procedure by liquid chromatography-high-resolution mass spectrometry before being retrospectively analyzed using an in-house novel psychoactive substances data processing method. Bromazolam was detected in 41 postmortem cases in 2021 and quantitatively confirmed by standard addition, using liquid chromatography-tandem mass spectrometry. The mean bromazolam concentration observed was 11.4 ± 53.7 ng/mL (median concentration: 1.6 ng/mL), with a range from 0.5 to 319.3 ng/mL and the majority of cases co-occurring with fentanyl. These low concentrations may be indicative of a presumed enhancement of opioid effects, rather than being used as a stand-alone drug. Bromazolam was always detected with opioids (fentanyl and carfentanil), stimulants (methamphetamine) and/or other benzodiazepines (etizolam and flualprazolam). To our knowledge, this is the first report to provide concentrations of bromazolam in postmortem blood samples in Canada.


Subject(s)
Analgesics, Opioid , Tandem Mass Spectrometry , British Columbia , Retrospective Studies , Analgesics, Opioid/analysis , Fentanyl
17.
J Transl Med ; 21(1): 60, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717893

ABSTRACT

Features of the gut microbiota have been associated with several chronic diseases and longevity in preclinical models as well as in observational studies. Whether these relations underlie causal effects in humans remains to be established. We aimed to determine whether the gut microbiota influences cardiometabolic traits as well as the risk of chronic diseases and human longevity using a comprehensive 2-Sample Mendelian randomization approach. We included as exposures 10 gut-associated metabolites and pathways and 57 microbial taxa abundance. We included as outcomes nine cardiometabolic traits (fasting glucose, fasting insulin, systolic blood pressure, diastolic blood pressure, HDL cholesterol, LDL cholesterol, triglycerides, estimated glomerular filtration rate, body mass index [BMI]), eight chronic diseases previously linked with the gut microbiota in observational studies (Alzheimer's disease, depression, type 2 diabetes, non-alcoholic fatty liver disease, coronary artery disease (CAD), stroke, osteoporosis and chronic kidney disease), as well as parental lifespan and longevity. We found 7 associations with evidence of causality before and after sensitivity analyses, but not after multiple testing correction (1198 tests). Most effect sizes (4/7) were small. The two largest exposure-outcome effects were markedly attenuated towards the null upon inclusion of BMI or alcohol intake frequency in multivariable MR analyses. While finding robust genetic instruments for microbiota features is challenging hence potentially inflating type 2 errors, these results do not support a large causal impact of human gut microbita features on cardiometabolic traits, chronic diseases or longevity. These results also suggest that the previously documented associations between gut microbiota and human health outcomes may not always underly causal relations.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Humans , Longevity/genetics , Gastrointestinal Microbiome/genetics , Mendelian Randomization Analysis , Coronary Artery Disease/genetics , Body Mass Index , Chronic Disease , Polymorphism, Single Nucleotide , Genome-Wide Association Study
18.
Commun Med (Lond) ; 2: 130, 2022.
Article in English | MEDLINE | ID: mdl-36249462

ABSTRACT

Background: Observational studies have linked adiposity and especially abdominal adiposity to liver fat accumulation and non-alcoholic fatty liver disease. These traits are also associated with type 2 diabetes and coronary artery disease but the causal factor(s) underlying these associations remain unexplored. Methods: We used a multivariable Mendelian randomization study design to determine whether body mass index and waist circumference were causally associated with non-alcoholic fatty liver disease using publicly available genome-wide association study summary statistics of the UK Biobank (n = 461,460) and of non-alcoholic fatty liver disease (8434 cases and 770,180 control). A multivariable Mendelian randomization study design was also used to determine the respective causal contributions of waist circumference and liver fat (n = 32,858) to type 2 diabetes and coronary artery disease. Results: Using multivariable Mendelian randomization we show that waist circumference increase non-alcoholic fatty liver disease risk even when accounting for body mass index (odd ratio per 1-standard deviation increase = 2.35 95% CI = 1.31-4.22, p = 4.2e-03), but body mass index does not increase non-alcoholic fatty liver disease risk when accounting for waist circumference (0.86 95% CI = 0.54-1.38, p = 5.4e-01). In multivariable Mendelian randomization analyses accounting for liver fat, waist circumference remains strongly associated with both type 2 diabetes (3.27 95% CI = 2.89-3.69, p = 3.8e-80) and coronary artery disease (1.66 95% CI = 1.54-1.8, p = 3.4e-37). Conclusions: These results identify waist circumference as a strong, independent, and causal contributor to non-alcoholic fatty liver disease, type 2 diabetes and coronary artery disease, thereby highlighting the importance of assessing body fat distribution for the prediction and prevention of cardiometabolic diseases.

19.
iScience ; 25(10): 105210, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36267918

ABSTRACT

Premature atrial contractions (PACs) are frequently observed on electrocardiograms and are associated with increased risks of atrial fibrillation (AF), stroke, and mortality. In this study, we aimed to identify genetic susceptibility loci for PAC frequency. We performed a genome-wide association study meta-analysis with PAC frequency obtained from ambulatory cardiac monitoring in 4,831 individuals of European ancestry. We identified a genome-wide significant locus at the SCN5A gene. The lead variant, rs7373862, located in an intron of SCN5A, was associated with an increase of 0.12 [95% CI 0.08-0.16] standard deviations of the normalized PAC frequency per risk allele. Among genetic variants previously associated with AF, there was a significant enrichment in concordance of effect for PAC frequency (n = 73/106, p = 5.1 × 10-5). However, several AF risk loci, including PITX2, were not associated with PAC frequency. These findings suggest the existence of both shared and distinct genetic mechanisms for PAC frequency and AF.

20.
Nat Commun ; 13(1): 5144, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050321

ABSTRACT

The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization.


Subject(s)
Arrhythmias, Cardiac , Electrocardiography , Arrhythmias, Cardiac/genetics , Death, Sudden, Cardiac , Electrocardiography/methods , Genetic Testing , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...