Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 15: 1360521, 2024.
Article in English | MEDLINE | ID: mdl-38497037

ABSTRACT

Background: Muscle cramps are typically regarded as benign muscle overactivity in healthy individuals, whereas spasms are linked to spasticity resulting from central motor lesions. However, their striking similarities made us hypothesize that cramping is an under-recognized and potentially misidentified aspect of spasticity. Methods: A systematic search on spasms and cramps in patients with Upper Motor Neuron Disorder (spinal cord injury, cerebral palsy, traumatic brain injury, and stroke) was carried out in Embase/Medline, aiming to describe the definitions, characteristics, and measures of spasms and cramps that are used in the scientific literature. Results: The search identified 4,202 studies, of which 253 were reviewed: 217 studies documented only muscle spasms, 7 studies reported only cramps, and 29 encompassed both. Most studies (n = 216) lacked explicit definitions for either term. One-half omitted any description and when present, the clinical resemblance was significant. Various methods quantified cramp/spasm frequency, with self-reports being the most common approach. Conclusion: Muscle cramps and spasms probably represent related symptoms with a shared pathophysiological component. When considering future treatment strategies, it is important to recognize that part of the patient's spasms may be attributed to cramps.

2.
Exp Brain Res ; 240(1): 159-171, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34686909

ABSTRACT

Spinal DC stimulation (tsDCS) shows promise as a technique for the facilitation of functional recovery of motor function following central nervous system (CNS) lesion. However, the network mechanisms that are responsible for the effects of tsDCS are still uncertain. Here, in a series of experiments, we tested the hypothesis that tsDCS increases the excitability of the long-latency stretch reflex, leading to increased excitability of corticospinal neurons in the primary motor cortex. Experiments were performed in 33 adult human subjects (mean age 28 ± 7 years/14 females). Subjects were seated in a reclining armchair with the right leg attached to a footplate, which could be quickly plantarflexed (100 deg/s; 6 deg amplitude) to induce stretch reflexes in the tibialis anterior (TA) muscle at short (45 ms) and longer latencies (90-95 ms). This setup also enabled measuring motor evoked potentials (MEPs) and cervicomedullary evoked potentials (cMEPs) from TA evoked by transcranial magnetic stimulation (TMS) and electrical stimulation at the cervical junction, respectively. Cathodal tsDCS at 2.5 and 4 mA was found to increase the long-latency reflex without any significant effect on the short-latency reflex. Furthermore, TA MEPs, but not cMEPs, were increased following tsDCS. We conclude that cathodal tsDCS over lumbar segments may facilitate proprioceptive transcortical reflexes in the TA muscle, and we suggest that the most likely explanation of this facilitation is an effect on ascending fibers in the dorsal columns.


Subject(s)
Motor Cortex , Reflex, Stretch , Adult , Electric Stimulation , Evoked Potentials, Motor , Female , Humans , Muscle, Skeletal , Transcranial Magnetic Stimulation , Young Adult
3.
J Neurophysiol ; 124(3): 985-993, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32783594

ABSTRACT

Plastic adaptations are known to take place in muscles, tendons, joints, and the nervous system in response to changes in muscle activity. However, few studies have addressed how these plastic adaptations are related. Thus this study focuses on changes in the mechanical properties of the ankle plantarflexor muscle-tendon unit, stretch reflex activity, and spinal neuronal pathways in relation to cast immobilization. The left rat hindlimb from toes to hip was immobilized with a plaster cast for 1, 2, 4, or 8 wk followed by acute electrophysiological recordings to investigate muscle stiffness and stretch reflex torque. Moreover, additional acute experiments were performed after 4 wk of immobilization to investigate changes in the central gain of the stretch reflex. Monosynaptic reflexes (MSR) were recorded from the L4 and L5 ventral roots following stimulation of the corresponding dorsal roots. Rats developed reduced range of movement in the ankle joint 2 wk after immobilization. This was accompanied by significant increases in the stiffness of the muscle-tendon complex as well as an arthrosis at the ankle joint at 4 and 8 wk following immobilization. Stretch reflexes were significantly reduced at 4-8 wk following immobilization. This was associated with increased central gain of the stretch reflex. These data show that numerous interrelated plastic changes occur in muscles, connective tissue, and the central nervous system in response to changes in muscle use. The findings provide an understanding of coordinated adaptations in multiple tissues and have important implications for prevention and treatment of the negative consequences of immobilization following injuries of the nervous and musculoskeletal systems.NEW & NOTEWORTHY Immobilization leads to multiple simultaneous adaptive changes in muscle, connective tissue, and central nervous system.


Subject(s)
Adaptation, Physiological/physiology , Ankle Joint/physiology , Immobilization , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Reflex, Monosynaptic/physiology , Reflex, Stretch/physiology , Spinal Nerve Roots/physiology , Animals , Atrophy , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL