Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Alzheimers Dis ; 96(2): 683-693, 2023.
Article in English | MEDLINE | ID: mdl-37840499

ABSTRACT

BACKGROUND: White matter hyperintensities (WMH) that occur in the setting of vascular cognitive impairment and dementia (VCID) may be dynamic increasing or decreasing volumes or stable over time. Quantifying such changes may prove useful as a biomarker for clinical trials designed to address vascular cognitive-impairment and dementia and Alzheimer's Disease. OBJECTIVE: Conducting multi-site cross-site inter-rater and test-retest reliability of the MarkVCID white matter hyperintensity growth and regression protocol. METHODS: The NINDS-supported MarkVCID Consortium evaluated a neuroimaging biomarker developed to track WMH change. Test-retest and cross-site inter-rater reliability of the protocol were assessed. Cognitive test scores were analyzed in relation to WMH changes to explore its construct validity. RESULTS: ICC values for test-retest reliability of WMH growth and regression were 0.969 and 0.937 respectively, while for cross-site inter-rater ICC values for WMH growth and regression were 0.995 and 0.990 respectively. Word list long-delay free-recall was negatively associated with WMH growth (p < 0.028) but was not associated with WMH regression. CONCLUSIONS: The present data demonstrate robust ICC validity of a WMH growth/regression protocol over a one-year period as measured by cross-site inter-rater and test-retest reliability. These data suggest that this approach may serve an important role in clinical trials of disease-modifying agents for VCID that may preferentially affect WMH growth, stability, or regression.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia, Vascular , White Matter , Humans , White Matter/diagnostic imaging , Reproducibility of Results , Magnetic Resonance Imaging , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Biomarkers
2.
Alzheimers Dement ; 19(8): 3519-3527, 2023 08.
Article in English | MEDLINE | ID: mdl-36815663

ABSTRACT

INTRODUCTION: High-performing biomarkers measuring the vascular contributions to cognitive impairment and dementia are lacking. METHODS: Using a multi-site observational cohort study design, we examined the diagnostic accuracy of plasma placental growth factor (PlGF) within the MarkVCID Consortium (n = 335; CDR 0-1). Subjects underwent clinical evaluation, cognitive testing, MRI, and blood sampling as defined by Consortium protocols. RESULTS: In the prospective population of 335 subjects (72.2 ± 7.8 years of age, 49.3% female), plasma PlGF (pg/mL) shows an ordinal odds ratio (OR) of 1.16 (1.07-1.25; P = .0003) for increasing Fazekas score and ordinal OR of 1.22 (1.14-1.32; P < .0001) for functional cognitive impairment measured by the Clinical Dementia Rating scale. We achieved the primary study outcome of a site-independent association of plasma PlGF (pg/mL) with white matter injury and cognitive impairment in two of three study cohorts. Secondary outcomes using the full MarkVCID cohort demonstrated that plasma PlGF can significantly discriminate individuals with Fazekas ≥ 2 and CDR = 0.5 (area under the curve [AUC] = 0.74) and CDR = 1 (AUC = 0.89) from individuals with CDR = 0. DISCUSSION: Plasma PlGF measured by standardized immunoassay functions as a stable, reliable, diagnostic biomarker for cognitive impairment associated with substantial white matter burden.


Subject(s)
Cognitive Dysfunction , Female , Humans , Male , Middle Aged , Biomarkers , Cognitive Dysfunction/diagnosis , Placenta Growth Factor , Prospective Studies , Aged , Aged, 80 and over
3.
Neuroimage ; 245: 118754, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34826595

ABSTRACT

Cerebrovascular reactivity (CVR), which measures the ability of cerebral blood vessels to dilate or constrict in response to vasoactive stimuli such as CO2 inhalation, is an important index of the brain's vascular health. Quantification of CVR using BOLD MRI with hypercapnia challenge has shown great promises in research and clinical studies. However, in order for it to be used as a potential imaging biomarker in large-scale and multi-site studies, the reliability of CO2-CVR quantification across different MRI acquisition platforms and researchers/raters must be examined. The goal of this report from the MarkVCID small vessel disease biomarkers consortium is to evaluate the reliability of CO2-CVR quantification in three studies. First, the inter-rater reliability of CO2-CVR data processing was evaluated by having raters from 5 MarkVCID sites process the same 30 CVR datasets using a cloud-based CVR data processing pipeline. Second, the inter-scanner reproducibility of CO2-CVR quantification was assessed in 10 young subjects across two scanners of different vendors. Third, test-retest repeatability was evaluated in 20 elderly subjects from 4 sites with a scan interval of less than 2 weeks. In all studies, the CO2 CVR measurements were performed using the fixed inspiration method, where the subjects wore a nose clip and a mouthpiece and breathed room air and 5% CO2 air contained in a Douglas bag alternatively through their mouth. The results showed that the inter-rater CoV of CVR processing was 0.08 ± 0.08% for whole-brain CVR values and ranged from 0.16% to 0.88% in major brain regions, with ICC of absolute agreement above 0.9959 for all brain regions. Inter-scanner CoV was found to be 6.90 ± 5.08% for whole-brain CVR values, and ranged from 4.69% to 12.71% in major brain regions, which are comparable to intra-session CoVs obtained from the same scanners on the same day. ICC of consistency between the two scanners was 0.8498 for whole-brain CVR and ranged from 0.8052 to 0.9185 across major brain regions. In the test-retest evaluation, test-retest CoV across different days was found to be 18.29 ± 17.12% for whole-brain CVR values, and ranged from 16.58% to 19.52% in major brain regions, with ICC of absolute agreement ranged from 0.6480 to 0.7785. These results demonstrated good inter-rater, inter-scanner, and test-retest reliability in healthy volunteers, and suggested that CO2-CVR has suitable instrumental properties for use as an imaging biomarker of cerebrovascular function in multi-site and longitudinal observational studies and clinical trials.


Subject(s)
Cerebrovascular Circulation , Hypercapnia/diagnostic imaging , Administration, Inhalation , Aged , Aging , Brain/diagnostic imaging , Brain Mapping , Carbon Dioxide/pharmacology , Female , Healthy Volunteers , Humans , Hypercapnia/metabolism , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Observer Variation , Reproducibility of Results , Young Adult
4.
Transl Stroke Res ; 12(5): 905-922, 2021 10.
Article in English | MEDLINE | ID: mdl-33423214

ABSTRACT

We previously showed that newly formed vessels in ischemic rat brain have high blood-brain barrier (BBB) permeability at 3 weeks after stroke due to a lack of major endothelial tight junction proteins (TJPs), which may exacerbate edema in stroke patients. Atorvastatin was suggested a dose-dependent pro-angiogenic effect and ameliorating BBB permeability beyond its cholesterol-lowering effects. This study examined our hypothesis that, during vascular remodeling after stroke, treatment with atorvastatin could facilitate BBB maturation in remodeling vasculature in ischemic brain. Adult spontaneously hypertensive rats underwent middle cerebral artery occlusion with reperfusion (MCAO/RP). Atorvastatin, at dose of 3 mg/kg, was delivered daily starting at 14 days after MCAO/RP onset for 7 days. The rats were studied at multiple time points up to 8 weeks with multimodal-MRI, behavior tests, immunohistochemistry, and biochemistry. The delayed treatment of atorvastatin significantly reduced infarct size and BBB permeability, restored cerebral blood flow, and improved the neurological outcome at 8 weeks after MCAO/RP. Postmortem studies showed that atorvastatin promoted angiogenesis and stabilized the newly formed vessels in peri-infarct areas. Importantly, atorvastatin facilitated maturation of BBB properties in the new vessels by promoting endothelial tight junction (TJ) formation. Further in vivo and in vitro studies demonstrated that proliferating peri-vascular pericytes expressing neural-glial antigen 2 (NG2) mediated the role of atorvastatin on BBB maturation through regulating endothelial TJ strand formations. Our results suggested a therapeutic potential of atorvastatin in facilitating a full BBB integrity and functional stroke recovery, and an essential role for pericyte-mediated endothelial TJ formation in remodeling vasculature.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Animals , Atorvastatin , Blood-Brain Barrier , Brain Ischemia/complications , Brain Ischemia/drug therapy , Humans , Infarction, Middle Cerebral Artery/drug therapy , Pericytes , Rats , Stroke/drug therapy , Vascular Remodeling
5.
Neurobiol Dis ; 114: 95-110, 2018 06.
Article in English | MEDLINE | ID: mdl-29486300

ABSTRACT

Vascular cognitive impairment is a major cause of dementia caused by chronic hypoxia, producing progressive damage to white matter (WM) secondary to blood-brain barrier (BBB) opening and vascular dysfunction. Tight junction proteins (TJPs), which maintain BBB integrity, are lost in acute ischemia. Although angiogenesis is critical for neurovascular remodeling, less is known about its role in chronic hypoxia. To study the impact of TJP degradation and angiogenesis during pathological progression of WM damage, we used the spontaneously hypertensive/stroke prone rats with unilateral carotid artery occlusion and Japanese permissive diet to model WM damage. MRI and IgG immunostaining showed regions with BBB damage, which corresponded with decreased endothelial TJPs, claudin-5, occludin, and ZO-1. Affected WM had increased expression of angiogenic factors, Ki67, NG2, VEGF-A, and MMP-3 in vascular endothelial cells and pericytes. To facilitate the study of angiogenesis, we treated rats with minocycline to block BBB disruption, reduce WM lesion size, and extend survival. Minocycline-treated rats showed increased VEGF-A protein, TJP formation, and oligodendrocyte proliferation. We propose that chronic hypoxia disrupts TJPs, increasing vascular permeability, and initiating angiogenesis in WM. Minocycline facilitated WM repair by reducing BBB damage and enhancing expression of TJPs and angiogenesis, ultimately preserving oligodendrocytes.


Subject(s)
Capillary Permeability/physiology , Endothelium, Vascular/metabolism , Hypertension/metabolism , Neovascularization, Pathologic/metabolism , Tight Junctions/metabolism , White Matter/metabolism , Animals , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , Endothelium, Vascular/diagnostic imaging , Hypertension/diagnostic imaging , Inflammation/diagnostic imaging , Inflammation/metabolism , Male , Neovascularization, Pathologic/diagnostic imaging , Rats , Rats, Inbred SHR , Rats, Inbred WKY , White Matter/diagnostic imaging , White Matter/injuries
6.
J Neuroinflammation ; 12: 26, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25889169

ABSTRACT

BACKGROUND: Minocycline reduces reperfusion injury by inhibiting matrix metalloproteinases (MMPs) and microglia activity after cerebral ischemia. Prior studies of minocycline investigated short-term neuroprotective effects during subacute stage of stroke; however, the late effects of minocycline against early reperfusion injury on neurovascular remodeling are less well studied. We have shown that spontaneous angiogenesis vessels in ischemic brain regions have high blood-brain barrier (BBB) permeability due to lack of major tight junction proteins (TJPs) in endothelial cells at three weeks. In the present study, we longitudinally investigated neurological outcome, neurovascular remodeling and microglia/macrophage alternative activation after spontaneous and minocycline-induced stroke recovery. METHODS: Adult spontaneously hypertensive rats had a 90 minute transient middle cerebral artery occlusion. At the onset of reperfusion they received a single dose of minocycline (3 mg/kg intravenously) or a vehicle. They were studied at multiple time points up to four weeks with magnetic resonance imaging (MRI), immunohistochemistry and biochemistry. RESULTS: Minocycline significantly reduced the infarct size and prevented tissue loss in the ischemic hemispheres compared to vehicle-treated rats from two to four weeks as measured with MRI. Cerebral blood flow measured with arterial spin labeling (ASL) showed that minocycline improved perfusion. Dynamic contrast-enhanced MRI indicated that minocycline reduced BBB permeability accompanied with higher levels of TJPs measured with Western blot. Increased MMP-2 and -3 were detected at four weeks. Active microglia/macrophage, surrounding and within the peri-infarct areas, expressed YM1, a marker of M2 microglia/macrophage activation, at four weeks. These microglia/macrophage expressed both pro-inflammatory factors tumor necrosis factors-α (TNF-α) and interleukin-1ß (IL-1ß) and anti-inflammatory factors transforming growth factor-ß (TGF-ß) and interleukin-10 (IL-10). Treatment with minocycline significantly reduced levels of TNF-α and IL-1ß, and increased levels of TGF-ß, IL-10 and YM1. CONCLUSIONS: Early minocycline treatment against reperfusion injury significantly promotes neurovascular remodeling during stroke recovery by reducing brain tissue loss, enhancing TJP expression in ischemic brains and facilitating neuroprotective phenotype alternative activation of microglia/macrophages.


Subject(s)
Blood-Brain Barrier/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Macrophages/drug effects , Microglia/drug effects , Minocycline/therapeutic use , Recovery of Function/drug effects , Animals , Blood-Brain Barrier/physiology , Cerebrovascular Circulation/drug effects , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation/drug effects , Magnetic Resonance Imaging , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Rats , Rats, Inbred SHR , Rec A Recombinases/metabolism , Reperfusion , Time Factors
7.
J Cereb Blood Flow Metab ; 35(7): 1145-53, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25712499

ABSTRACT

Hypertensive small vessel disease is a major cause of vascular cognitive impairment (VCI). Spontaneously hypertensive/stroke prone rats (SHR/SP) with unilateral carotid artery occlusion (UCAO) and a Japanese permissive diet (JPD) have white-matter (WM) damage similar to that seen in VCI. We hypothesized that WM injury was due to hypoxia-mediated, blood-brain barrier (BBB) disruption. Twelve-week-old SHR/SP had UCAO/JPD and were studied with immunohistochemistry, biochemistry, multimodal magnetic resonance imaging (MRI), and Morris water maze (MWM) testing. One week after UCAO/JPD, WM showed a significant increase in hypoxia inducible factor-1α (HIF-1α), which increased further by 3 weeks. Prolyl hydroxylase-2 (PHD2) expression decreased at 1 and 3 weeks. Infiltrating T cells and neutrophils appeared around endothelial cells from 1 to 3 weeks after UCAO/JPD, and matrix metalloproteinase-9 (MMP-9) colocalized with inflammatory cells. At 3 weeks, WM immunostained for IgG, indicating BBB leakage. Minocycline (50 mg/kg intraperitoneally) was given every other day from weeks 12 to 20. Multimodal MRI showed that treatment with minocycline significantly reduced lesion size and improved cerebral blood flow. Minocycline improved performance in the MWM and prolonged survival. We propose that BBB disruption occurred secondary to hypoxia, which induced an MMP-9-mediated infiltration of leukocytes. Minocycline significantly reduced WM damage, improved behavior, and prolonged life.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Hypoxia/complications , Inflammation/drug therapy , Minocycline/therapeutic use , White Matter/drug effects , White Matter/pathology , Animals , Anti-Bacterial Agents/therapeutic use , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/immunology , Blood-Brain Barrier/pathology , Cerebrovascular Circulation/drug effects , Hypoxia/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/analysis , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Inflammation/complications , Inflammation/immunology , Inflammation/pathology , Male , Matrix Metalloproteinase 2/analysis , Matrix Metalloproteinase 2/immunology , Matrix Metalloproteinase 9/analysis , Matrix Metalloproteinase 9/immunology , Rats , Rats, Inbred SHR , White Matter/immunology , White Matter/injuries
8.
PLoS One ; 9(5): e96761, 2014.
Article in English | MEDLINE | ID: mdl-24804769

ABSTRACT

Stroke is a leading cause of death and disability and treatment options are limited. A promising approach to accelerate the development of new therapeutics is the use of high-throughput screening of chemical libraries. Using a cell-based high-throughput oxygen-glucose deprivation (OGD) model, we evaluated 1,200 small molecules for repurposed application in stroke therapy. Isoxsuprine hydrochloride was identified as a potent neuroprotective compound in primary neurons exposed to OGD. Isoxsuprine, a ß2-adrenergic agonist and NR2B subtype-selective N-methyl-D-aspartate (NMDA) receptor antagonist, demonstrated no loss of efficacy when administered up to an hour after reoxygenation in an in vitro stroke model. In an animal model of transient focal ischemia, isoxsuprine significantly reduced infarct volume compared to vehicle (137 ± 18 mm3 versus 279 ± 25 mm3, p < 0.001). Isoxsuprine, a peripheral vasodilator, was FDA approved for the treatment of cerebrovascular insufficiency and peripheral vascular disease. Our demonstration of the significant and novel neuroprotective action of isoxsuprine hydrochloride in an in vivo stroke model and its history of human use suggest that isoxsuprine may be an ideal candidate for further investigation as a potential stroke therapeutic.


Subject(s)
Brain Ischemia/drug therapy , Isoxsuprine/therapeutic use , Neurons/drug effects , Neuroprotective Agents/therapeutic use , Stroke/drug therapy , Animals , Disease Models, Animal , Isoxsuprine/pharmacology , Male , Neuroprotective Agents/pharmacology , Rats , Rats, Inbred SHR , Rats, Sprague-Dawley
9.
J Cereb Blood Flow Metab ; 33(7): 1104-14, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23571276

ABSTRACT

In cerebral ischemia, matrix metalloproteinases (MMPs) have a dual role by acutely disrupting tight junction proteins (TJPs) in the blood-brain barrier (BBB) and chronically promoting angiogenesis. Since TJP remodeling of the neurovascular unit (NVU) is important in recovery and early inhibition of MMPs is neuroprotective, we hypothesized that short-term MMP inhibition would reduce infarct size and promote angiogenesis after ischemia. Adult spontaneously hypertensive rats had a transient middle cerebral artery occlusion with reperfusion. At the onset of ischemia, they received a single dose of the MMP inhibitor, GM6001. They were studied at multiple times up to 4 weeks with immunohistochemistry, biochemistry, and magnetic resonance imaging (MRI). We observed newly formed vessels in peri-infarct regions at 3 weeks after reperfusion. Dynamic contrast-enhanced MRI showed BBB opening in new vessels. Along with the new vessels, pericytes expressed zonula occludens-1 (ZO-1) and MMP-3, astrocytes expressed ZO-1, occludin, and MMP-2, while endothelial cells expressed claudin-5. The GM6001, which reduced tissue loss at 3 to 4 weeks, significantly increased new vessel formation with expression of TJPs and MMPs. Our results show that pericytes and astrocytes act spatiotemporally, contributing to extraendothelial TJP formation, and that MMPs are involved in BBB restoration during recovery. Early MMP inhibition benefits neurovascular remodeling after stroke.


Subject(s)
Brain Ischemia/drug therapy , Dipeptides/therapeutic use , Matrix Metalloproteinase Inhibitors/therapeutic use , Matrix Metalloproteinases/metabolism , Neovascularization, Physiologic/drug effects , Tight Junction Proteins/biosynthesis , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/embryology , Blood-Brain Barrier/physiopathology , Blotting, Western , Brain Ischemia/enzymology , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Cell Death/drug effects , DNA Fragmentation/drug effects , Dipeptides/administration & dosage , In Situ Nick-End Labeling , Magnetic Resonance Imaging , Male , Matrix Metalloproteinase Inhibitors/administration & dosage , Rats , Rats, Inbred SHR
10.
J Neuroinflammation ; 8: 108, 2011 Aug 29.
Article in English | MEDLINE | ID: mdl-21871134

ABSTRACT

BACKGROUND AND PURPOSE: Oligodendrocyte (OL) death is important in focal cerebral ischemia. TIMP-3 promotes apoptosis in ischemic neurons by inhibiting proteolysis of TNF-α superfamily of death receptors. Since OLs undergo apoptosis during ischemia, we hypothesized that TIMP-3 contributes to OL death. METHODS: Middle cerebral artery occlusion (MCAO) was induced in Timp-3 knockout (KO) and wild type (WT) mice with 24 or 72 h of reperfusion. Cell death in white matter was investigated by stereology and TUNEL. Mature or immature OLs were identified using antibodies against glutathione S-transferase-π (GST-π) and galactocerebroside (GalC), respectively. Expression and level of proteins were examined using immunohistochemistry and immunoblotting. Protein activities were determined using a FRET peptide. RESULTS: Loss of OL-like cells was detected at 72 h only in WT ischemic white matter where TUNEL showed greater cell death. TIMP-3 expression was increased in WT reactive astrocytes. GST-π was reduced in ischemic white matter of WT mice compared with WT shams with no difference between KO and WT at 72 h. GalC level was significantly increased in both KO and WT ischemic white matter at 72 h. However, the increase in GalC in KO mice was significantly higher than WT; most TUNEL-positive cells in ischemic white matter expressed GalC, suggesting TIMP-3 deficiency protects the immature OLs from apoptosis. There were significantly higher levels of cleaved caspase-3 at 72 h in WT white matter than in KO. Greater expression of MMP-3 and -9 was seen in reactive astrocytes and/or microglia/macrophages in WT at 72 h. We found more microglia/macrophages in WT than in KO, which were the predominant source of increased TNF-α detected in the ischemic white matter. TACE activity was significantly increased in ischemic WT white matter, which was expressed in active microglia/macrophages and OLs. CONCLUSIONS: Our results suggested that focal ischemia leads to proliferation of immature OLs in white matter and that TIMP-3 contributes to a caspase-3-dependent immature OL death via TNF-α-mediated neuroinflammation. Future studies will be needed to delineate the role of MMP-3 and MMP-9 that were increased in the Timp-3 wild type.


Subject(s)
ADAM Proteins/metabolism , Brain Ischemia/physiopathology , Cell Death/physiology , Oligodendroglia/physiology , Tissue Inhibitor of Metalloproteinase-3/metabolism , Tumor Necrosis Factor-alpha/metabolism , ADAM17 Protein , Animals , Brain/cytology , Brain/metabolism , Brain/pathology , Brain Ischemia/pathology , Caspase 3/metabolism , Fluorescence Resonance Energy Transfer , In Situ Nick-End Labeling , Infarction, Middle Cerebral Artery/metabolism , Male , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout , Oligodendroglia/cytology , Oligodendroglia/pathology , Tissue Inhibitor of Metalloproteinase-3/genetics
11.
J Neurochem ; 112(1): 134-49, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19840223

ABSTRACT

Increased matrix metalloproteinase (MMP) activity is implicated in proteolysis of extracellular matrix in ischemic stroke. We recently observed intranuclear MMP activity in ischemic brain neurons at early reperfusion, suggesting a possible role in nuclear matrix proteolysis. Nuclear proteins, poly-ADP-ribose polymerase-1 (PARP-1) and X-ray cross-complementary factor 1 (XRCC1), as well as DNA repair enzymes, are important in DNA fragmentation and cell apoptosis. We hypothesized that intranuclear MMP activity facilitates oxidative injury in neurons during early ischemic insult by cleaving PARP-1 and XRCC1, interfering with DNA repair. We induced a 90-min middle cerebral artery occlusion in rats. Increase activity of MMP-2 and -9, detected in the ischemic neuronal nuclei at 3 h, was associated with DNA fragmentation at 24 and 48 h reperfusion. The intranuclear MMPs cleaved PARP-1. Treatment of the rats with a broad-spectrum MMP inhibitor, BB1101, significantly attenuated ischemia-induced PARP-1 cleavage, increasing its activity. Degradation of XRCC1 caused by ischemic insult in rat brain was also significantly attenuated by BB1101. We found elevation of oxidized DNA, apurinic/apyrimidinic sites, and 8-hydroxy-2'-deoxyguanosine, in ischemic brain cells at 3 h reperfusion. BB1101 markedly attenuated the early increase of oxidized DNA. Using tissue from stroke patients, we found increased intranuclear MMP expression. Our data suggest that intranuclear MMP activity cleaves PARP-1 and XRCC1, interfering with oxidative DNA repair. This novel role for MMPs could contribute to neuronal apoptosis in ischemic injuries.


Subject(s)
Brain Ischemia/enzymology , DNA Repair/physiology , Intranuclear Space/enzymology , Matrix Metalloproteinases/metabolism , Neurons/enzymology , Oxidative Stress/physiology , Up-Regulation/physiology , Animals , Enzyme Activation/physiology , Humans , Male , Mice , Rats , Rats, Inbred SHR
12.
J Cereb Blood Flow Metab ; 27(4): 697-709, 2007 Apr.
Article in English | MEDLINE | ID: mdl-16850029

ABSTRACT

Matrix metalloproteinases (MMPs) disrupt the blood-brain barrier (BBB) during reperfusion. Occludin and claudins are recently described tight junction proteins (TJPs) that form the BBB. We hypothesized that the opening of the BBB was because of the degradation of TJPs by the MMPs. Spontaneously hypertensive rats had a 90 mins middle cerebral artery occlusion with reperfusion for 2, 3, or 24 h. Matrix metalloproteinases were measured by immunohistochemistry and in situ and gel zymography. Real-time polymerase chain reaction (PCR) measured mRNAs of MMP-2 and -9, furin, membrane-type MMP (MT1-MMP), occludin, and claudin-5. There was opening of the BBB in the piriform cortex after 3 h of reperfusion, and an MMP inhibitor, BB-1101 (30 mg/kg), prevented the opening. At 3 h, in situ zymograms showed gelatinase activity. Zymography and PCR showed greater increases in MMP-2 than in MMP-9. There were increased mRNA and immunohistochemistry for MT1-MMP and furin, which activate MMP-2. Claudin-5 and occludin mRNA expression decreased at 2 h in both hemispheres with fragments of both proteins seen on Western blot by 3 h on the ischemic side; treatment with BB-1101 reversed the degradation of the TJPs. Immunohistochemistry at 3 h showed fragmented TJPs within the endothelial cell clefts. By 24 h, in situ zymography showed gelatinase activity and gel zymography showed elevated levels of MMP-9. Disrupted TJPs previously seen in endothelial cells appeared in the surrounding astrocytes. Our results provide direct evidence that MMPs open the BBB by degrading TJPs and that an MMP inhibitor prevents degradation of the TJPs by MMPs.


Subject(s)
Brain Ischemia/drug therapy , Cerebral Arteries/metabolism , Cerebral Veins/metabolism , Matrix Metalloproteinase Inhibitors , Matrix Metalloproteinases/physiology , Nerve Tissue Proteins/metabolism , Protease Inhibitors/pharmacology , Tight Junctions/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Blood-Brain Barrier/drug effects , Blotting, Western , Brain Ischemia/metabolism , Cerebral Arteries/drug effects , Cerebral Veins/drug effects , Claudin-5 , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Enzyme Activators/pharmacology , Evans Blue , Furin/biosynthesis , Gelatinases/metabolism , Immunohistochemistry , Infarction, Middle Cerebral Artery/pathology , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinases/biosynthesis , Membrane Proteins/metabolism , Occludin , RNA, Messenger/biosynthesis , Rats , Rats, Inbred SHR , Reperfusion Injury/pathology , Reverse Transcriptase Polymerase Chain Reaction , Sucrose , Tight Junctions/drug effects
13.
Eur J Neurosci ; 16(8): 1599-608, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12405974

ABSTRACT

Sequences of movements are initiated abnormally in neurological disorders involving basal ganglia dysfunction, such as Parkinson's disease or Tourette's syndrome. The substantia nigra pars reticulata (SNpr) is one of the two primary output structures of the basal ganglia. However, little is known about how substantia nigra mediates the initiation of normal movement sequences. We studied its role in coding initiation of a sequentially stereotyped but natural movement sequence by recording neuronal activity in SNpr during behavioural performance of 'syntactic grooming chains'. These are rule-governed sequences of up to 25 grooming movements emitted in four predictable (syntactic) phases, which occur spontaneously during grooming behaviour by rats and other rodents. Our results show that neuronal activation in central SNpr codes the onset of this entire rule-governed sequential pattern of grooming actions, not elemental grooming movements. We conclude that the context of sequential pattern may be more important than the elemental motor parameters in determining SNpr neuronal activation.


Subject(s)
Action Potentials/physiology , Basal Ganglia Diseases/physiopathology , Movement/physiology , Neurons/physiology , Substantia Nigra/physiology , Animals , Grooming/physiology , Male , Motor Activity/physiology , Nerve Net/cytology , Nerve Net/physiology , Neural Pathways/cytology , Neural Pathways/physiology , Neurons/cytology , Rats , Rats, Sprague-Dawley , Substantia Nigra/cytology , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...