Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Chembiochem ; : e202400093, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695553

ABSTRACT

Oxidative stress is a cellular disorder implicated in various severe diseases and redox biology and represents an important field of research for the last decades. One of the major consequences of oxidative stress is the carbonylation of proteins, which is also a reliable marker to assess protein oxidative modifications. Accumulation of carbonylated proteins has been associated with aging and age-related diseases and can ultimately causes cell death. Detection of these oxidative modifications is essential to understand and discover new treatments against oxidative stress. We describe the design and the synthetic pathway of new BODIPY fluorescent probes functionalized with hydrazide function for protein carbonyl labeling to improve existing methodologies such as 2D-Oxi electrophoresis. Hydrazide BODIPY analogues show very good fluorescent properties such as NIR emission up to 633 nm and quantum yield up to 0.88. These new probes were validated for the detection and quantification of carbonylated proteins with 2D-Oxi electrophoresis using mouse muscle protein extracts, as well as both flow cytometry and microscopy using oxidant stressed C2 C12 cells.

2.
Org Biomol Chem ; 21(14): 2976-2982, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36939308

ABSTRACT

Efficient synthesis of original 1,6-naphthyridin-7(6H)-ones and their optical properties are described. Their powerful fluorescence properties including dual fluorescence, solvatochromism, acidochromism, large Stokes shifts and high quantum yields, suitable for biological applications or as luminescent devices in materials science, are evidenced.

3.
Org Lett ; 25(1): 256-260, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36580358

ABSTRACT

Commercially available Fe(TTP)Cl catalyzes three-component dearomative formal cycloaddition reactions between pyridines, diazo compounds, and coumalates. Diversely substituted annelated seven-membered N-heterocycles could be generated in less than 10 min in one step at room temperature. The reaction is compatible to gram scale. The extension to benzimidazoles in place of pyridines has been successfully demonstrated. The mechanism of this reaction has been carefully examined by computational studies that corroborate the observed regioselectivities.

4.
ChemSusChem ; 14(8): 1821-1824, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33651919

ABSTRACT

A general, sustainable dearomatization reaction for nitrogen-containing heterocycles was developed. Under solvent free conditions and without catalyst, the biorenewable methyl coumalate (MC) reacted as an efficient C3 partner to convert nine types of basic aromatic rings into their pyrido[1,2-a] fused derivatives in good to excellent yields. The fluorescence properties of some of the products were harnessed to conjugate fluorescent tags to bovine serum albumin (BSA) and immunoglobulin G.


Subject(s)
Fluorescent Dyes/chemistry , Heterocyclic Compounds/chemical synthesis , Hydrocarbons, Aromatic/chemical synthesis , Anisoles/chemistry , Benzofurans/chemistry , Catalysis , Cycloaddition Reaction , Immunoglobulin G/chemistry , Indoles/chemistry , Molecular Structure , Optical Imaging , Pyrones/chemistry , Pyrroles/chemistry , Serum Albumin, Bovine/chemistry , Solvents/chemistry
5.
Dalton Trans ; 49(48): 17635-17641, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33226042

ABSTRACT

Transition metal-based anticancer compounds, as an alternative to platinum derivatives, are raising scientific interest as they may present distinct although poorly understood mechanisms of action. We used a structure-activity relationship-based methodology to investigate the chemical and biological features of a series of ten (C^N)-chelated half-sandwich iridiumIII complexes of the general formula [IrCp*(phox)Cl], where (phox) is a 2-phenyloxazoline ligand forming a 5-membered metallacycle. This series of compounds undergoes a fast exchange of their chlorido ligand once solubilised in DMSO. They were cytotoxic to HeLa cells with IC50 values in the micromolar range and induced a rapid activation of caspase-3, an apoptosis marker. In vitro, the oxidative power of all the complexes towards NADH was highlighted but only the complexes bearing substituents on the oxazoline ring were able to produce H2O2 at the micromolar range. However, we demonstrated using a powerful HyPer protein redox sensor-based flow cytometry assay that most complexes rapidly raised intracellular levels of H2O2. Hence, this study shows that oxidative stress can partly explain the cytotoxicity of these complexes on the HeLa cell line and gives a first entry to their mechanism of action.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Iridium/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Iridium/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship
6.
Org Biomol Chem ; 17(10): 2784-2791, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30789178

ABSTRACT

We report the first use of renewable, bio-based, non-hazardous feedstock methyl coumalate (MC) in organocatalyzed Morita-Baylis-Hillman (MBH) reactions. This atom-economical pathway employs inexpensive Et3N as a catalyst in ethanol. Synthon MC efficiently constructs C-C bonds with various imines and aldehydes in moderate to good yields. This catalytic process is triggered via an unprecedented 1,6-conjugated addition, as opposed to the classical MBH reaction. Moreover, this methodology expands Morita-Baylis-Hillman donor capabilities to a 2-pyrone derivative for the first time. MBH adducts described herein could be applied to the synthesis of fine chemicals with biologically active structural cores, such as diphenylmethanol, hydroisobenzofurans, and hydroisoindoles.


Subject(s)
Pyrones/chemistry , Catalysis , Ethanol/chemistry , Green Chemistry Technology , Pyrones/chemical synthesis
7.
Biosens Bioelectron ; 117: 201-206, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29906767

ABSTRACT

Polyoxymetalates (POMs) ([SiW11O39{Sn(CH2)2CO)}]4- and [P2W17O61{Sn(CH2)2CO)}]6-) were used to modify dideoxynucleotides (ddNTPs) through amide bond formation, and applied to the multiplexed detection of single nucleotide polymorphisms (SNPs) in an electrochemical primer extension reaction. Each gold electrode of an array was functionalised with a short single stranded thiolated DNA probe, specifically designed to extend with the POM-ddNTP at the SNP site to be interrogated. The system was applied to the simultaneous detection of 4 SNPs within a single stranded 103-mer model target generated using asymmetric PCR, highlighting the potential of POM-ddNTPs for targeted, multiplexed SNP detection. The four DNA bases were successfully labelled with both ([SiW11O39{Sn(CH2)2CO)}]4- and [P2W17O61{Sn(CH2)2CO)}]6-), and [SiW11O39{Sn(CH2)2CO)}]4- demonstrated to be the more suitable due to its single oxidation peak, which provides an unequivocal signal. The POM-ddNTP enzymatically incorporated to the DNA anchored to the surface was visualised by AFM using gold coated mica. The developed assay has been demonstrated to be highly reproducible, simple to carry out and with very low non-specific background signals. Future work will focus on applying the developed platform to the detection of SNPs associated with rifampicin resistance in real samples from patients suffering from tuberculosis.


Subject(s)
Biosensing Techniques/methods , Polymorphism, Single Nucleotide , Tungsten Compounds/chemistry , DNA Primers/chemistry , Humans , Reproducibility of Results
8.
Chemistry ; 24(43): 11177-11184, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29782690

ABSTRACT

Self-assembled monolayers formed by chemisorption of thiolated molecules on gold surfaces are widely applied for biosensing. Moreover, and due to the low stability of thiol-gold chemistry, contributions to the functionalisation of gold substrates with linkers that provide a more stable platform for the immobilisation of electroactive or biological molecules are highly appreciated. Herein, it is demonstrated that a carboxylated organotin compound can be successfully grafted onto gold substrates to form a highly stable organic layer with reactivity for subsequent binding to an aminated molecule. A battery of techniques were used to characterise the surface chemistry. The grafted layer was used to anchor aminoferrocene and subjected to both thermostability tests and long-term stability studies over a period of one year, demonstrating thermostability up to 90 °C and storage stability for at least 12 months at 4 °C protected from light. The stable surface tethering of molecules on gold substrates can be exploited in a plethora of applications, including molecular techniques, such as solid-phase amplification and solid-phase melting curve analysis, that require elevated temperature stability, as well as biosensors, which require long-term storage stability.

9.
Chemistry ; 23(44): 10597-10603, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28544266

ABSTRACT

Redox-labeled nucleotides are of increasing interest for the fabrication of next generation molecular tools and should meet requirements of being thermally stable, sensitive, and compatible with polymerase-mediated incorporation while also being electrochemically discriminable. The synthesis and characterization of Keggin and Dawson polyoxometalate-deoxynucleotide (POM-dNTP) bioconjugates linked through 7-deaza-modified purines is described. The modified POM-dNTPs were used for polymerase-based amplification of a DNA sequence specific for Yersinia pestis and the amplified DNA detected using an electrochemical DNA sensor. This highlights the potential of polyoxometalates as thermally stable, sensitive and polymerase-compatible redox labels for exploitation in bioanalytical applications.


Subject(s)
DNA, Bacterial/chemistry , Electrochemical Techniques , Nucleotides/chemistry , Tungsten Compounds/chemistry , Yersinia pestis/genetics , DNA, Bacterial/metabolism , Electrodes , Electrophoresis, Gel, Pulsed-Field , Gold/chemistry , Polymerase Chain Reaction , Yersinia pestis/isolation & purification
10.
J Org Chem ; 82(10): 5499-5505, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28471191

ABSTRACT

The reaction of methyl coumalate with a wide range of methylene active compounds, such as keto-esters or keto-sulfones and cyclic or acyclic diketones, afforded more than 30 2,3,5,6-tetrasubstituted 2H-pyrans. The reaction proceeds via a cascade reaction involving a Michael addition-6π-electrocyclic ring opening-proton transfer and 6π electrocyclization, in which a variety of functional groups were tolerated.

11.
Eur J Med Chem ; 130: 308-319, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28254701

ABSTRACT

Based on classical drug design theory, a novel series of gentiopicroside derivatives was designed and synthesized. All synthesized compounds were then biologically evaluated for their inhibition of influenza virus and anti-HCV activity in vitro. Some of the gentiopicroside derivatives, such as 11a, 13d and 16 showed interesting anti-influenza virus activity with IC50 at 39.5 µM, 45.2 µM and 44.0 µM, respectively. However, no significant anti-HCV activity was found for all of gentiopicroside derivatives. The preliminary results indicate that modification of the sugar moiety on gentiopicroside was helpful for enhancing the anti-influenza activities. Our works demonstrate the importance of secoiridoid natural products as new leads in the development of potential antiviral inhibitors.


Subject(s)
Antiviral Agents/chemical synthesis , Influenza, Human/drug therapy , Iridoid Glucosides/pharmacology , Animals , Antiviral Agents/pharmacology , Cell Line , Drug Design , Humans , Influenza, Human/virology , Iridoid Glucosides/chemistry , Orthomyxoviridae/drug effects , Structure-Activity Relationship
12.
Mini Rev Med Chem ; 17(1): 62-77, 2017.
Article in English | MEDLINE | ID: mdl-27342232
13.
Chemistry ; 21(49): 17721-7, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26490074

ABSTRACT

The bioconjugation of polyoxometalates (POMs), which are inorganic metal oxido clusters, to DNA strands to obtain functional labeled DNA primers and their potential use in electrochemical detection have been investigated. Activated monooxoacylated polyoxotungstates [SiW11 O39 {Sn(CH2 )2 CO}](8-) and [P2 W17 O61 {Sn(CH2 )2 CO}](6-) have been used to link to a 5'-NH2 terminated 21-mer DNA forward primer through amide coupling. The functionalized primer was characterized by using a battery of techniques, including electrophoresis, mass spectrometry, as well as IR and Raman spectroscopy. The functionality of the POM-labeled primers was demonstrated through hybridization with a surface-immobilized probe. Finally, the labeled primers were successfully used in the polymerase chain reaction (PCR) and the PCR products were characterized by using electrophoresis.


Subject(s)
DNA Primers/chemistry , DNA/chemistry , Tungsten Compounds/chemistry , DNA/metabolism , DNA Primers/metabolism , Electrochemistry , Nucleic Acid Hybridization , Polymerase Chain Reaction
14.
Chemistry ; 21(46): 16512-6, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26406341

ABSTRACT

Can achiral organocatalysts linked to chiral polyanionic metal oxide clusters provide good selectivity in enantioselective C-C bond formations? The answer to this question is investigated by developing a new active hybrid polyoxometalate-based catalyst for asymmetric Diels-Alder reaction. Chirality transfer from the chiral anionic polyoxometalate to the covalently linked achiral imidazolidinone allows Diels-Alder cycloaddition products to be obtained with good yields and high enantioselectivities when using cyclopentadiene and acrylaldehydes as partners.

15.
Chemistry ; 20(49): 16074-7, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25345788

ABSTRACT

An α1 -Dawson polyanion bearing a lateral side chain with a 4-aminopyridine end group was synthesized. This organopolyoxometalate catalyzes the addition of indenyl allyl silanes to cinnamoyl fluorides. The polyanionic framework influences the organocatalyst activity and selectivity. A moderate but nonzero chirality transfer from the chiral inorganic framework to the organic substrate was observed.

16.
Org Lett ; 16(15): 3860-3, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25028788

ABSTRACT

Grafting of a palladium complex to the Dawson vanadotungstate polyanion [P2W15V3O62](9-) via an organic ligand generates a large family of pincer-type hybrid polyoxometalates. The palladium-POM derivatives have dual catalytic properties. Unlike their parent inorganic polyanions, they catalyze allylations while retaining their oxidant character, which leads to single-pot dual site catalysis. This opens a new route for multicatalytic reactions.

17.
J Org Chem ; 79(14): 6579-89, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24960188

ABSTRACT

Pyridyl-substituted 1,3,5-triazines were synthesized in good to excellent yields via an unprecedented one-step cyclocondensation of 4H-pyrido[1,3]oxazin-4-ones with amidines at room temperature or under microwave irradiations. The broad applicability was demonstrated by 33 examples with a variety of amidines and three different 4H-pyrido[1,3]oxazin-4-one chemical series. In addition, a one-pot process from 4H-pyrido[1,3]oxazin-4-one precursors (imide sodium salts) was developed and led to the desired triazines compounds, thus allowing a one-step economy in their global synthetic preparation. This approach provides rapid access to pyridyl (or pyridone)-substituted 1,3,5-triazines with high potential in various fields of application.


Subject(s)
Oxazines/chemistry , Triazines/chemical synthesis , Cyclization , Molecular Structure , Triazines/chemistry
18.
Cell Regen ; 3: 10, 2014.
Article in English | MEDLINE | ID: mdl-25678957

ABSTRACT

BACKGROUND: SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. RESULTS: The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. CONCLUSION: Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures and that future polyoxometalate chemistry must consider further modification strategies, to address the substantial challenges involved in achieving target selectivity.

19.
Org Lett ; 15(14): 3494-7, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23829313

ABSTRACT

Unreported 2-substituted 4H-pyrido[e][1,3]oxazin-4-ones are synthesized via an unprecedented intramolecular O-arylation of N-aroyl- and N-heteroaroyl-(iso)nicotinamides under microwave irradiations, in good to excellent yields. The broad applicability was demonstrated by 24 examples with a variety of substituents at the 2-position of the final compounds and 3 possible positions for the nitrogen atom of the pyridine ring. In addition, transformation of one of these compounds into 2-hydroxypyridyl-substituted 1,2,4-triazole and 1,2,4-oxazinone was realized. This approach opens a rapid access to a new bicyclic heteroaromatic chemical series with high potential in medicinal chemistry.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Oxazines/chemistry , Pyridines/chemistry , Chemistry, Pharmaceutical , Structure-Activity Relationship
20.
Chemistry ; 18(41): 12962-5, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-22945503

ABSTRACT

Grafting of a gold complex to an organo-polyoxometalate delivers catalytically active bitopic hybrids. The gold end activates allenes, while the metal-oxide surface can capture protons (see scheme). The scope of the gold-catalyzed oxacyclization of allenols is expanded to highly sensitive tertiary benzylic alcohols.

SELECTION OF CITATIONS
SEARCH DETAIL