Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 915
Filter
1.
J Phys Chem A ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269269

ABSTRACT

The indolylfulgide systems have been extensively investigated due to their potential applications as photochromic materials. In this work, the photoinduced ring-closure/opening and isomerization reactions of a photochromic indolylfulgide in vacuum and acetonitrile solvent have been investigated by means of MS-CASPT2//CASSCF and QM(MS-CASPT2)//CASSCF/MM. The deactivation mechanisms of indolylfulgide have been proposed based on the optimized structures in the S0 and S1 states, S1/S0 conical intersections, and the calculated minimum-energy paths. After excitation into the first singlet excited-state, which is spectroscopically bright in the Franck-Condon point of the E, the photoprocesses proceed toward a nearby S1 minimum. Then, two possible nonadiabatic relaxation paths exist to repopulate the ground state. In the ring closure reaction, the S1 E isomer evolves directly into one S1/S0 conical intersection and decays to the ground state with bifurcation toward C or E. In the E → Z tautomerization pathway, the excited system can deactivate to the S0 state via a distinct conical intersection. The minimum-energy paths of the indolylfulgide revealed that the ring closure reaction in the solvent is more facile to take place than the E → Z isomerization after irradiation of the same E. Furthermore, for the ring opening reaction from the C side, there exists an energy barrier (11.1 kcal/mol) in the S1 state before arriving at the conical intersection. The computational results showed that the solvent has some influence on the system compared with that in the gas phase. The present work could contribute to comprehending the photoreactions of indolylfulgide and its derivatives in solution.

2.
Int J Nanomedicine ; 19: 9035-9053, 2024.
Article in English | MEDLINE | ID: mdl-39253060

ABSTRACT

Background: Ischemic preconditioning-induced serum exosomes (IPC-exo) protected rat heart against myocardial ischemia/reperfusion injury. However, whether IPC-exo regulate replacement fibrosis after myocardial infarction (MI) and the underlying mechanisms remain unclear. MicroRNAs (miRs) are important cargos of exosomes and play an essential role in cardioprotection. We aim to investigate whether IPC-exo regulate post-MI replacement fibrosis by transferring cardioprotective miRs and its action mechanism. Methods: Exosomes obtained from serum of adult rats in control (Con-exo) and IPC groups were identified and analyzed, subsequently intracardially injected into MI rats following ligation. Their miRs profiles were identified using high-throughput miR sequencing to identify target miRs for bioinformatics analysis. Luciferase reporter assays confirmed target genes of selected miRs. IPC-exo transfected with selected miRs antagomir or NC were intracardially administered to MI rats post-ligation. Cardiac function and degree of replacement fibrosis were detected 4 weeks post-MI. Results: IPC-exo exerted cardioprotective effects against excessive replacement fibrosis. MiR sequencing and RT-qPCR identified miR-133a-3p as most significantly different between IPC-exo and Con-exo. MiR-133a-3p directly targeted latent transforming growth factor beta binding protein 1 (LTBP1) and protein phosphatase 2, catalytic subunit, alpha isozyme (PPP2CA). KEGG analysis showed that transforming growth factor-ß (TGF-ß) was one of the most enriched signaling pathways with miR-133a-3p. Comparing to injection of IPC-exo transfected with miR-133a-3p antagomir NC, injecting IPC-exo transfected with miR-133a-3p antagomir abolished protective effects of IPC-exo on declining excessive replacement fibrosis and cardiac function enhancement, while increasing the messenger RNA and protein expression of LTBP1, PPP2CA, and TGF-ß1in MI rats. Conclusion: IPC-exo inhibit excessive replacement fibrosis and improve cardiac function post-MI by transferring miR-133a-3p, the mechanism is associated with directly targeting LTBP1 and PPP2CA, and indirectly regulating TGF-ß pathway in rats. Our finding provides potential therapeutic effect of IPC-induced exosomal miR-133a-3p for cardiac repair.


Subject(s)
Exosomes , MicroRNAs , Myocardial Infarction , Protein Phosphatase 2 , Animals , MicroRNAs/blood , MicroRNAs/genetics , Myocardial Infarction/blood , Myocardial Infarction/therapy , Myocardial Infarction/genetics , Exosomes/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Male , Rats , Rats, Sprague-Dawley , Fibrosis , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/therapy , Myocardium/metabolism , Ischemic Preconditioning/methods , Ischemic Preconditioning, Myocardial/methods
3.
Front Immunol ; 15: 1465365, 2024.
Article in English | MEDLINE | ID: mdl-39253072

ABSTRACT

C-reactive protein (CRP) plays a crucial role in the diagnosis and monitoring of the non-specific acute phase response in humans. In contrast, rat CRP (rCRP) is an atypical acute-phase protein that possesses unique features, such as a possible incapacity to trigger the complement system and markedly elevated baseline plasma concentrations. To facilitate in vitro studies on these unique characteristics, obtaining high-quality pure rCRP is essential. Here we explored various strategies for rCRP purification, including direct isolation from rat plasma and recombinant expression in both prokaryotic and eukaryotic systems. Our study optimized the recombinant expression system to enhance the secretion and purification efficiency of rCRP. Compared to traditional purification methods, we present a streamlined and effective approach for the expression and purification of rCRP in the Pichia pastoris system. This refined methodology offers significant improvements in the efficiency and effectiveness of rCRP purification, thereby facilitating further structural and functional studies on rCRP.


Subject(s)
C-Reactive Protein , Recombinant Proteins , Animals , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Rats , Recombinant Proteins/isolation & purification , Recombinant Proteins/genetics , Gene Expression , Saccharomycetales/genetics , Saccharomycetales/metabolism , Pichia/genetics , Pichia/metabolism
4.
Am J Cancer Res ; 14(8): 3976-3993, 2024.
Article in English | MEDLINE | ID: mdl-39267659

ABSTRACT

Neoadjuvant targeted therapy combining targeted agents with chemotherapy significantly improve survival rates of patients suffering from human epidermal receptor (HER2)-positive breast cancer (BC) in early or locally advanced stages. However, approximately 50% of patients fail to achieve a pathological complete response. In response, targeted photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as effective strategies to bolster primary tumors treatment. In this context, we developed a novel nanodrug, referred to as "P/ICG", which comprised of a tyrosine-kinase inhibitor pyrotinib and the photosensitizer indocyanine green (ICG). This formulation was created for the targeted and multimodal synergistic therapy of HER2-positive BC. Upon irradiation with near-infrared light, ICG generates high levels of intracellular reactive oxygen species and elevated temperature, enhancing chemotherapy effects of pyrotinib. This synergistic action boosts a highly effective anticancer effect promoting the ferroptosis pathway, providing an efficient therapeutic strategy for treating HER2-positive BC.

5.
Complement Ther Med ; : 103076, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243985

ABSTRACT

OBJECTIVES: This meta-analysis aimed to explore the relationship between the dose of acupuncture sessions, acupuncture frequency, and acupuncture duration and its effects on migraine. METHODS: Eight databases were searched for randomized controlled trials (RCTs) evaluating the efficacy of penetrating manual acupuncture for migraine published in English and Chinese from inception to June 20, 2024. The robust-error meta-regression (REMR) approach and non-linear meta-regression with restricted cubic spline (RCS) were used to investigate the dose-response association between acupuncture sessions, acupuncture frequency, and acupuncture duration and the frequency of migraine attacks. The potential nonlinear relationships was tested by restricting the regression coefficient to zero and a P value<0.1. The statistical analysis was conducted using Stata 17.0. The risk of bias was independently assessed by two reviewers using the Cochrane tool. The reporting quality for acupuncture procedures was evaluated by STRICTA criteria. RESULTS: Thirty-two RCTs involving 1562 participants were included, and the results showed a J-shaped dose-response association between acupuncture sessions, acupuncture frequency, and acupuncture duration and migraine attack frequency. After 16 acupuncture sessions, the change in the frequency of migraine attacks was 3.95 (95%CI: 3.13 to 4.77). Three sessions of acupuncture a week resulted in a significant decrease in the frequency of migraine attacks, reaching 4.04 (95% CI: 2.49 to 5.58). After two months of acupuncture, the frequency of migraine attacks decreased significantly, showing a difference of 4.05 (95% CI: 3.61 to 4.49). Subsequently, the improvement trend gradually flattened, yielding diminishing benefits to patients. The risk of bias showed that seven studies were rated as "low risk", two were rated as "high risk", and the others were rated as "unclear risk". The reporting quality of RCTs of acupuncture for migraine remain suboptimal. CONCLUSIONS: A non-linear dose-response relationship was found between acupuncture sessions, acupuncture frequency, and acupuncture duration and migraine attack frequency. The results of our study recommend 16 sessions of acupuncture with a frequency of 3 sessions/week and a treatment duration of 1.5 to 2 months. REGISTRATION NUMBER: This meta-analysis has been registered on PROSPERO (CRD42023400493).

6.
Sensors (Basel) ; 24(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39123845

ABSTRACT

For industry image data, this paper proposes an image classification method based on stochastic configuration networks and multi-scale feature extraction. The multi-scale features are extracted from images of different scales using deep 2DSCN, and the hidden features of multiple layers are also connected together to obtain more informational features. The integrated features are fed into SCNs to learn a classifier which improves the recognition rate for different categories. In the experiments, a handwritten digit database and an industry hot-rolled steel strip database are used, and the comparison results demonstrate the proposed method can effectively improve the classification accuracy.

7.
Opt Lett ; 49(16): 4622-4625, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146119

ABSTRACT

Potassium tantalate niobate (KTN) represents a noteworthy category of optical crystals known for their superior nonlinear optical properties. In this study, we conducted measurements of femtosecond time-resolved transient absorption (TA) spectra in KTa0.57Nb0.43O3 crystals. Notably, a rapid and pronounced "plateau" phase, ∼1.5 ps in duration, was detected at the onset of the TA kinetics and succeeded by two distinct decay components, exhibiting lifetimes of ∼140 ps and over 10 ns, respectively. We attribute these observations to a decay process involving two-photon absorption, dispersion characteristics, and excited state absorption. Based on this unique TA characteristic of KTN crystals, an all-optical switching strategy was proposed and utilized to measure the ultrafast lasing dynamics of single-crystal CH3NH3PbBr3 nanowires. This polarization-independent TA gate approach offers an adjustable gate width combining ps and ns time scales and introduces a versatile tool for advanced optical applications.

8.
Small ; : e2403440, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39149924

ABSTRACT

Current thrombolytic drugs exhibit suboptimal therapeutic outcomes and potential bleeding risks due to their limited circulation time, inadequate thrombus penetration, and off-target biodistribution. Herein, a photosensitizer-loaded, red cell membrane-encapsuled multiple magnetic nanoparticles aggregate is successfully developed for integrated mechanical/photothermal/photodynamic thrombolysis. Red cell membrane coating endows magnetic particles with prolonged blood circulation and superior biocompatibility. Under a preset rotating magnetic field (RMF), the aggregate with asymmetric magnetic distribution initiates rolling motion toward the blood clot interface, and because of magnetic dipole-dipole interactions, the aggregate tends to self-assemble into longer, flexible chain-like microrobotic swarm with powerful mechanical stir forces, thereby facilitating thrombus penetration and mechanical thrombolysis. Moreover, precise magnetic control enables targeted photosensitizer accumulation, allowing effective conversion of near-infrared (NIR) light into heat and reactive oxygen species (ROS) for thrombus phototherapy. In thrombolysis assays, the weight of thrombi is massively reduced by ≈90%. The work presents a safer and more promising combination of magnetic microrobotic technology and phototherapy for multi-modality thrombolysis.

9.
World J Clin Cases ; 12(23): 5416-5421, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39156097

ABSTRACT

BACKGROUND: Endobronchial metastases (EBMs) are tumours that metastasise from a malignant tumour outside the lungs to the central and subsegmental bronchi, and are visible under a bronchofibrescope. Most EBMs are formed by direct invasion or metastasis of intrathoracic malignant tumours, such as lung cancer, oesophageal cancer or mediastinum tumours. Renal cell carcinoma (RCC), accounting for 2% to 3% of all tumours, is a common malignant tumour of the urinary system. Renal clear cell carcinoma (RCCC) constitutes the predominant pathological subtype of RCC, comprising approximately 70% to 80% of all RCC cases. RCCC can spread and metastasise through arterial, venous and lymphatic circulation to almost all organs of the body. Moreover, lung, bone, liver, brain and local recurrence are the most common metastatic neoplasms of RCCC. However, EBM from RCCC has a low complication rate and is often misdiagnosed as primary lung cancer. CASE SUMMARY: A 71-year-old male patient who had undergone radical left nephrectomy 7 years prior due to RCCC was referred to our hospital due to a 1-mo history of productive cough. The results of an enhanced chest CT scan indicated the presence of a soft tissue nodule in the upper lobe of the left lung, and flexible bronchoscopy revealed a hypervascular lesion in the bronchus of the left lung's superior lobe. Therefore, the patient underwent thoracoscopic left superior lobe wedge resection, and pathology confirmed EBM from the RCCC. CONCLUSION: EBM from RCCC has a low incidence and no characteristic clinical manifestations in the early stage. If a bronchial tumour is found in a patient with RCCC, the possibility of bronchial metastatic cancer should be considered.

10.
Chemistry ; : e202402417, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087567

ABSTRACT

The absorbent expansion elastomer plays a crucial role in engineering sealing and holds a promising future in this field as infrastructure continues to develop. Traditional materials have their limitations, especially when used in large construction projects where the integrity and reliability of the material are of utmost importance. In this work, a self-healing water-absorbing expansion elastomer was developed for continuous production at a large scale to monitor the sealing conditions of massive infrastructure projects. At room temperature, the material exhibited a repairing efficiency of 57.77% within 2 h, which increased to 84.02% after 12 h. This extended reaction time allowed for effective repairs when defects were detected. The material's strength reached approximately 3 MPa, making it suitable for a wide range of applications. The volume expansion rate of the material reached 200-400% for effective sealing, and the fictionalization of the packing made it have a good external force sensing effect and prevent heat build-up effect. The conductive detection performance of the absorbent expansion elastomer was improved by utilizing triple self-healing strategies, including dipole-dipole interaction, ion cross-linked network, and externally-aided restoration materials.

11.
Nat Commun ; 15(1): 6610, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39098904

ABSTRACT

There is no effective and noninvasive solution for thrombolysis because the mechanism by which certain thrombi become tissue plasminogen activator (tPA)-resistant remains obscure. Endovascular thrombectomy is the last option for these tPA-resistant thrombi, thus a new noninvasive strategy is urgently needed. Through an examination of thrombi retrieved from stroke patients, we found that neutrophil extracellular traps (NETs), ε-(γ-glutamyl) lysine isopeptide bonds and fibrin scaffolds jointly comprise the key chain in tPA resistance. A theranostic platform is designed to combine sonodynamic and mechanical thrombolysis under the guidance of ultrasonic imaging. Breakdown of the key chain leads to a recanalization rate of more than 90% in male rat tPA-resistant occlusion model. Vascular reconstruction is observed one month after recanalization, during which there was no thrombosis recurrence. The system also demonstrates noninvasive theranostic capabilities in managing pigs' long thrombi (>8 mm) and in revascularizing thrombosis-susceptible tissue-engineered vascular grafts, indicating its potential for clinical application. Overall, this noninvasive theranostic platform provides a new strategy for treating tPA-resistant thrombi.


Subject(s)
Thrombolytic Therapy , Thrombosis , Tissue Plasminogen Activator , Animals , Tissue Plasminogen Activator/therapeutic use , Humans , Thrombosis/diagnostic imaging , Thrombosis/drug therapy , Male , Rats , Thrombolytic Therapy/methods , Extracellular Traps/metabolism , Swine , Fibrinolytic Agents/therapeutic use , Fibrinolytic Agents/pharmacology , Rats, Sprague-Dawley , Disease Models, Animal , Fibrin/metabolism , Theranostic Nanomedicine/methods , Drug Resistance , Stroke/diagnostic imaging , Stroke/therapy , Stroke/drug therapy
12.
Angew Chem Int Ed Engl ; : e202411498, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143745

ABSTRACT

New generation of nanomaterials with organelle-level precision provide significant promise for targeted attacks on mitochondria, exhibiting remarkable therapeutic potency. Here, we report a novel amphiphilic phenolic polymer (PF) for the mitochondria-targeted photodynamic therapy (PDT), which can trigger excessive mitochondrial DNA (mtDNA) damages by the synergistic action of oxidative stress and furan-mediated DNA cross-linking. Moreover, the phenolic units on PF enable further self-assembly with Mn2+ via metal-phenolic coordination to form metal-phenolic nanomaterial (PFM). We focus on the synergistic activation of the cGAS-STING pathway by Mn2+ and tumor-derived mtDNA in tumor-associated macrophages (TAMs), and subsequently repolarizing M2-like TAMs to M1 phenotype. We highlight that PFM facilitates the cGAS-STING-dependent immunity at the organelle level for potent antitumor efficacy.

13.
Article in English | MEDLINE | ID: mdl-39171447

ABSTRACT

Insects have evolved a spectrum of strategies that facilitate survival in the face of adverse environmental conditions and bottom-up or top-down pressures. The egg is the first stage in the life cycle of most insects. It is not only immobile but in many insects is the stage that survives unfavourable seasons when food resources are unavailable. Eggs are targeted by oophagous natural enemies and also are subject to abiotic stresses. In response to these diverse stresses, insects have developed various egg protection strategies. Females of many insects lay eggs in clusters and then use their own body resources to cover them to provide protection from harsh environments and biotic attack. Such egg protection strategies have allowed some herbivorous insects to thrive in new environments and become serious invasive pests. Females of many insects protect their eggs in other ways (e.g. laying eggs in concealed places, direct parental care) while others do not provide protection at all. Here, we review various egg protective strategies in insects. Our focus is on adaptive ecological mechanisms and temporal variation as well as the benefits and costs of egg coverings. We highlight several case studies on how these egg protective traits might impede biological control of globally important agricultural and forest pests and propose a framework for incorporating egg protective traits into biological control programs especially for invasive insect pests.

14.
Zhonghua Nan Ke Xue ; 30(6): 493-498, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39212357

ABSTRACT

OBJECTIVE: To comprehensively analyze the numbers of involved chromosomes and breakpoints and the clinical phenotypes of the patients with complex chromosome rearrangement (CCR). METHODS: We selected 23 745 patients with abnormal fertility seeking medical care in the Center of Reproductive Medicine of Peking University Third Hospital from 2011 to 2015, and analyzed their peripheral blood chromosomal karyotypes using G-banding, C-banding and fluorescence in situ hybridization (FISH). RESULTS: A total of 28 CCR carriers (0.118%) were detected among the 23 745 patients with abnormal fertility, including 18 males mainly with azoospermia or oligoasthenospermia and 10 females mainly with infertility, recurrent abortion, embryo termination and abnormal birth. Of the 28 cases of CCR, tripartite rearrangement was found in 9 (32.14%), double translocation in 7 (25%) and special translocation in 12 (42.86%). CCR carrier-related chromosomes were all involved but chromosomes 12 and 19, while 2 and 5 were involved most frequently. CONCLUSION: At present, the incidence of CCR is low. CCR carriers with normal phenotypes are often found because of reproductive problems, and their low chance of having a normal baby necessitates the use of preimplantation genetic test to improve the rate of live birth. Due to the diversity of the chromosomes and breakpoints involved in CCR, it is crucial to give each CCR carrier precise genetic counseling.


Subject(s)
In Situ Hybridization, Fluorescence , Translocation, Genetic , Humans , Male , Female , Chromosome Aberrations , Karyotyping , Adult , Chromosome Banding , Azoospermia/genetics , Genetic Testing , Phenotype , Heterozygote , Infertility/genetics
15.
Med Sci Monit ; 30: e946106, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39113665

ABSTRACT

The Editors of Medical Science Monitor wish to inform you that the above manuscript has been retracted from publication due to concerns with the credibility and originality of the study, the manuscript content, and the Figure images. Reference: Weiwei Wei, Hao Tian, Xiandong Fu, Rongrong Yao, Dewang Su. Long Non-Coding RNA (lncRNA) SNHG5 Participates in Vertical Sleeve Gastrectomy for Type II Diabetes Mellitus by Regulating TGR5. Med Sci Monit, 2020; 26: e920628. DOI: 10.12659/MSM.920628.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrectomy , RNA, Long Noncoding , Receptors, G-Protein-Coupled , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/surgery , Gastrectomy/methods , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Animals , Male
16.
Nat Commun ; 15(1): 6096, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030168

ABSTRACT

Coherent interconversion between microwave and optical frequencies can serve as both classical and quantum interfaces for computing, communication, and sensing. Here, we present a compact microwave-optical transducer based on monolithic integration of piezoelectric actuators on silicon nitride photonic circuits. Such an actuator couples microwave signals to a high-overtone bulk acoustic resonator defined by the silica cladding of the optical waveguide core, suspended to enhance electromechanical and optomechanical couplings. At room temperature, this triply resonant piezo-optomechanical transducer achieves an off-chip photon number conversion efficiency of 1.6 × 10-5 over a bandwidth of 25 MHz at an input pump power of 21 dBm. The approach is scalable in manufacturing and does not rely on superconducting resonators. As the transduction process is bidirectional, we further demonstrate the synthesis of microwave pulses from a purely optical input. Capable of leveraging multiple acoustic modes for transduction, this platform offers prospects for frequency-multiplexed qubit interconnects and microwave photonics at large.

17.
J Environ Manage ; 366: 121665, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39032252

ABSTRACT

The escalating frequency, duration, and intensity of extreme heat events have posed a significant threat to human society in recent decades. Understanding the dynamic patterns of human mobility under extreme heat will contribute to accurately assessing the risk of extreme heat exposure. This study leverages an emerging geospatial data source, anonymous cell phone location data, to investigate how people in different communities adapt travel behaviors responding to extreme heat events. Taking the Greater Houston Metropolitan Area as an example, we develop two indices, the Mobility Disruption Index (MDI) and the Activity Time Shift Index (ATSI), to quantify diurnal mobility changes and activity time shift patterns at the city and intra-urban scales. The results reveal that human mobility decreases significantly in the daytime of extreme heat events in Houston while the proportion of activity after 8 p.m. is increased, accompanied with a delay in travel time in the evening. Moreover, these mobility-decreasing and activity-delaying effects exhibited substantial spatial heterogeneity across census block groups. Causality analysis using the Geographical Convergent Cross Mapping (GCCM) model combined with correlation analyses indicates that people in areas with a high proportion of minorities and poverty are less able to adopt heat adaptation strategies to avoid the risk of heat exposure. These findings highlight the fact that besides the physical aspect of environmental justice on heat exposure, the inequity lies in the population's capacity and knowledge to adapt to extreme heat. This research is the first of the kind that quantifies multi-level mobility for extreme heat responses, and sheds light on a new facade to plan and implement heat mitigations and adaptation strategies beyond the traditional approaches.


Subject(s)
Cell Phone , Extreme Heat , Humans
18.
Nanoscale ; 16(30): 14339-14349, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39028143

ABSTRACT

SnSe2 with high theoretical capacity has been identified as an emerging anode candidate for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). However, the rate performance and cycling performance of this material in practical applications are still limited by unavoidable volume expansion and low conductivity. In this work, we designed and synthesized nitrogen-doped carbon-coated SnSe2/C-N composites using 2-aminoterephthalic acid (C8H7NO4) as a nitrogen-containing compound for modification by hydrothermal and vacuum calcination methods to achieve efficient utilization of active sites and optimization of the electronic structure. The carbon skeleton inherited from the Sn-MOF precursor can effectively improve the electronic conduction properties of SnSe2. N-doping in the Sn-MOF can increase the positive and negative electrostatic potential energy regions on the molecular surface to further improve the electrical conductivity, and effectively reduce the binding energy with Li+/Na+ which was determined by Density Functional Theory (DFT) methods. In addition, the N-doped carbon skeleton also introduces a larger space for Li+/Na+ intercalation and enhances the mechanical properties. In particular, the post-synthetically modified MOF-derived SnSe2/C-N materials exhibit excellent cyclability, with a reversible capacity of 695 mA h g-1 for LIBs and 259 mA h g-1 for SIBs after 100 cycles at 100 mA g-1.

19.
Exp Eye Res ; 246: 109990, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969283

ABSTRACT

Ocular melanoma, including uveal melanoma (UM) and conjunctival melanoma (CM), is the most common ocular cancer among adults with a high rate of recurrence and poor prognosis. Loss of epigenetic homeostasis disturbed gene expression patterns, resulting in oncogenesis. Herein, we comprehensively analyzed the DNA methylation, transcriptome profiles, and corresponding clinical information of UM patients through multiple machine-learning algorithms, finding that a methylation-driven gene RBMS1 was correlated with poor clinical outcomes of UM patients. RNA-seq and single-cell RNA-seq analyses revealed that RBMS1 reflected diverse tumor microenvironments, where high RBMS1 expression marked an immune active TME. Furthermore, we found that tumor cells were identified to have the higher communication probability in RBMS1+ state. The functional enrichment analysis revealed that RBMS1 was associated with pigment granule and melanosome, participating in cell proliferation as well as apoptotic signaling pathway. Biological experiments were performed and demonstrated that the silencing of RBMS1 inhibited ocular melanoma proliferation and promoted apoptosis. Our study highlighted that RBMS1 reflects a distinct microenvironment and promotes tumor progression in ocular melanoma, contributing to the therapeutic customization and clinical decision-making.


Subject(s)
Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Melanoma , Tumor Microenvironment , Uveal Neoplasms , Humans , Melanoma/pathology , Melanoma/genetics , Melanoma/metabolism , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology , Uveal Neoplasms/metabolism , Apoptosis/genetics , DNA Methylation , Conjunctival Neoplasms/genetics , Conjunctival Neoplasms/pathology , Conjunctival Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Male , Female , Cell Line, Tumor
20.
Sci Rep ; 14(1): 16233, 2024 07 14.
Article in English | MEDLINE | ID: mdl-39004658

ABSTRACT

Saline-sodic stress restricts the absorption of zinc by rice, consequently impacting the photosynthesis process of rice plants. In this experiment, Landrace 9 was selected as the test material and the potting method was employed to investigate the influence of ZnO nanoparticles (ZnO NPs) on zinc absorption and chlorophyll fluorescence in rice grown in saline-sodic land. The research findings demonstrate that the application of ZnO NPs proves to be more advantageous for the growth of rice in saline-sodic soil. Notably, the application of ZnO NPs significantly decreases the levels of Na+ and MDA in rice leaves in saline-sodic soil, while increasing the levels of K+ and Zn2+. Additionally, ZnO NPs enhances the content of chloroplast pigments, specific energy flux, quantum yield, and the performance of active PSII reaction center (PIABS) in rice leaves under saline-sodic stress. Furthermore, the relative variable fluorescence (WK and VJ) and quantum energy dissipation rate (φDo) of rice are also reduced. Therefore, the addition of ZnO NPs enhances the transfer of electrons and energy within the rice photosystem when subjected to saline-sodic stress. This promotes photosynthesis in rice plants growing in saline-sodic land, increasing their resistance to saline-sodic stress and ultimately facilitating their growth and development.


Subject(s)
Oryza , Photosynthesis , Plant Leaves , Soil , Zinc Oxide , Oryza/metabolism , Oryza/drug effects , Oryza/growth & development , Zinc Oxide/pharmacology , Photosynthesis/drug effects , Plant Leaves/metabolism , Plant Leaves/drug effects , Soil/chemistry , Chlorophyll/metabolism , Photosystem II Protein Complex/metabolism , Metal Nanoparticles/chemistry , Fluorescence , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL