Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.350
Filter
1.
J Adv Res ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357646

ABSTRACT

INTRODUCTION: Invasive species pose a major threat to global biodiversity and agricultural productivity, yet the genomic mechanisms driving their rapid expansion into new habitats are not fully understood. The fall armyworm, Spodoptera frugiperda, originally from the Americas, has expanded its reach across the Old World, causing substantial reduction in crop yield. Although the hybridization between two genetically distinct strains has been well-documented, the role of such hybridization in enhancing the species' invasive capabilities remains largely unexplored. OBJECTIVES: This study aims to investigate the contributions of hybridization and natural selection to the rapid invasion of the fall armyworm. METHODS: We analyzed the whole-genome resequencing data from 432 individuals spanning its global distribution. We identified the genomic signatures of selection associated with invasion and explored their linkage with the Tpi gene indicating strain differentiation. Furthermore, we detected signatures of balancing selection in native populations for candidate genes that underwent selective sweeps during the invasion process. RESULTS: Our analysis revealed pronounced genomic differentiation between native and invasive populations. Invasive populations displayed a uniform genomic structure distinctly different from that of native populations, indicating hybridization between the strains during invasion. This hybridization likely contributes to maintaining high genetic diversity in invasive regions, which is crucial for survival and adaptation. Additionally, polymorphisms on genes under selection during invasion were possibly preserved through balancing selection in their native environments. CONCLUSION: Our findings reveal the genomic basis of the fall armyworm's successful invasion and rapid adaptation to new environments, highlighting the important role of hybridization in the dynamics of invasive species.

2.
Nat Commun ; 15(1): 8525, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358412

ABSTRACT

The study investigates the global impact of land property rights on land use efficiency (LUE), as measured by the key indicator for United Nations Sustainable Development Goal 11.3.1, namely Land Consumption Rate to Population Growth Rate. By utilizing human-land change data from 165 countries spanning the period between 1990 and 2020, we have developed a fixed effects model and employed legal origins as an instrumental variable to examine the influence of land property rights security on LUE. Our findings demonstrate that the security of land property rights significantly influences LUE, with common law countries exhibiting higher levels of LUE compared to civil law countries while controlling for other variables. Stability in property rights encourages long-term investments in infrastructure and sustainable land management practices, thereby enhancing land productivity and mitigating urban sprawl. Furthermore, safeguarding property rights limits governments' power to expropriate lands, facilitating rational and efficient land transactions that contribute towards achieving Sustainable Development Goals.

3.
J Dig Dis ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227029

ABSTRACT

OBJECTIVES: Endoscopic necrosectomy (EN) is a promising minimally invasive approach for treating infected walled-off pancreatic necrosis (WOPN). Multiple EN approaches are currently available, though criteria for selecting the optimal approaches are lacking. We aimed to propose a rational selection strategy of EN and to retrospectively evaluate its safety and effectiveness. METHODS: Altogether 101 patients who underwent EN for infected WOPN at a tertiary hospital between June 2009 and February 2023 were retrospectively included for analysis. Demographic characteristics, details of the EN procedures, procedure-related adverse events, and clinical outcomes were investigated. RESULTS: Among these 101 patients with WOPN, 56 (55.4%) underwent transluminal EN, 38 (37.6%) underwent percutaneous EN, and seven (6.9%) underwent combined approach, respectively. Clinical success was achieved in 94 (93.1%) patients. Seven (6.9%) experienced procedure-related adverse events, and seven (6.9%) died during the treatment period. During a median follow-up of 50 months, 5 (5.3%) of the 94 patients had disease recurrence, 17.0% (16/94) had new-onset diabetes mellitus, and 6.4% (6/94) needed oral pancreatic enzyme supplementation. The clinical success rate, procedure-related adverse event rate, and long-term follow-up outcomes were not significantly different among the three groups. High APACHE-II scores (≥15) and organ failure were identified as factors related to treatment failure. CONCLUSIONS: A selection strategy for EN approaches, based on the extent of necrosis and its distance from the gastrointestinal lumen (using a threshold of 15 mm), is safe and effective for treating infected WOPN in both short-term and long-term outcomes.

4.
J Imaging Inform Med ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39313716

ABSTRACT

This study developed and validated a deep learning-based diagnostic model with uncertainty estimation to aid radiologists in the preoperative differentiation of pathological subtypes of renal cell carcinoma (RCC) based on computed tomography (CT) images. Data from 668 consecutive patients with pathologically confirmed RCC were retrospectively collected from Center 1, and the model was trained using fivefold cross-validation to classify RCC subtypes into clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC). An external validation with 78 patients from Center 2 was conducted to evaluate the performance of the model. In the fivefold cross-validation, the area under the receiver operating characteristic curve (AUC) for the classification of ccRCC, pRCC, and chRCC was 0.868 (95% CI, 0.826-0.923), 0.846 (95% CI, 0.812-0.886), and 0.839 (95% CI, 0.802-0.88), respectively. In the external validation set, the AUCs were 0.856 (95% CI, 0.838-0.882), 0.787 (95% CI, 0.757-0.818), and 0.793 (95% CI, 0.758-0.831) for ccRCC, pRCC, and chRCC, respectively. The model demonstrated robust performance in predicting the pathological subtypes of RCC, while the incorporated uncertainty emphasized the importance of understanding model confidence. The proposed approach, integrated with uncertainty estimation, offers clinicians a dual advantage: accurate RCC subtype predictions complemented by diagnostic confidence metrics, thereby promoting informed decision-making for patients with RCC.

5.
Front Endocrinol (Lausanne) ; 15: 1367241, 2024.
Article in English | MEDLINE | ID: mdl-39253581

ABSTRACT

Background: Hematopoietic stem cell transplantation (HSCT) is an approach that has significantly improved the prognosis and survival of hematological patients. However, ovarian dysfunction and infertility following HSCT have gained increasing attention. Live births have been reported following ovarian tissue cryopreservation prior to HSCT and subsequent retransplantation of these tissues. Still, the feasibility of ovarian tissue cryopreservation (OTC) following graft failure (GF) of HSCT remains unknown. In this study, we report the first case of OTC following a GF of allogenic HSCT (allo-HSCT), as well as the cryopreservation of four MII oocytes via in vitro maturation with informed consent. Despite the lack of clinical outcomes after cryopreserved ovarian tissue retransplantation, we documented an interesting case in a woman after GF of allo-HSCT exhibiting functional ovaries and emphasized a clinical dilemma: whether OTC should be offered to women suffering from GF of HSCT. Case presentation: A 22-year-old woman with severe aplastic anemia who had suffered GF of allo-HSCT from her sibling brother [HLA allele match (7/10)] with a reduced dose conditioning regimen including fludarabine, cyclophosphamide, and antithymocyte globulin came to our reproductive center for fertility preservation, as she was about to receive the second allo-HSCT. We evaluated the ovarian reserve of this patient. Hormone assessments showed an anti-Müllerian hormone level of 3.921 ng/mL, a follicle-stimulating hormone level of 5.88 IU/L, a luteinizing hormone level of 10.79 IU/L, and an estradiol level of 33.34 pg/mL. Antral follicle counts accessed transvaginally showed 12-15 follicles. All assessments indicated a well-protected ovarian reserve. Due to the urgency of the second allo-HSCT, the patient decided to undergo ovarian cryopreservation. Laparoscopic surgery proceeded. Ovarian tissues were successfully cryopreserved using vitrification technology, and histologic evaluation demonstrated a follicle density of 20 per 2 × 2 mm2 biopsy with good viability. Four MII oocytes were obtained via in vitro maturation technology and cryopreserved. After the second HSCT, the patient relieved from aplastic anemia but suffered iatrogenic premature ovarian failure as predicted. Conclusion: OTC is applicable to fertility preservation in those undergoing GF of HSCT with benign hematological disorders and especially those who are about to receive the second HSCT.


Subject(s)
Cryopreservation , Fertility Preservation , Hematopoietic Stem Cell Transplantation , Ovary , Female , Humans , Young Adult , Anemia, Aplastic/complications , Anemia, Aplastic/therapy , Fertility Preservation/methods , Graft Rejection/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Ovarian Reserve , Ovary/pathology , Transplantation, Homologous/adverse effects
6.
J Agric Food Chem ; 72(38): 20831-20841, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39284582

ABSTRACT

This research adopted the Fischer indole synthesis method to continue constructing a novel drug-like chemical entity based on the guidance of isocryptolepine and obtained four series of derivatives: Y, Da, Db, and Dc. The antimicrobial activity of these derivatives against plant pathogens was further evaluated. The results showed that Dc-2 had the best antifungal effect against Botrytis cinerea, and its EC50 value was up to 1.29 µg/mL. In addition, an in vivo activity test showed that the protective effect of Dc-2 on apples was 82.2% at 200 µg/mL, which was better than that of Pyrimethanil (45.4%). Meanwhile, it was found by scanning electron microscopy and transmission electron microscopy that the compound Dc-2 affected the morphology of mycelia. The compound Dc-2 was found to damage the cell membrane by PI and ROS staining. Through experiments such as leakage of cell contents, it was found that the compound Dc-2 changed the permeability of the cell membrane and caused the leakage of substances in the cell. According to the above studies, compound Dc-2 can be used as a candidate lead compound for further structural optimization and development.


Subject(s)
Botrytis , Drug Design , Fungicides, Industrial , Plant Diseases , Botrytis/drug effects , Botrytis/growth & development , Plant Diseases/microbiology , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Malus/chemistry , Malus/microbiology , Bacteria/drug effects , Molecular Structure
7.
Sci Adv ; 10(39): eadp6285, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331707

ABSTRACT

The fallopian tubes play key roles in processes from pregnancy to ovarian cancer where three-dimensional (3D) cellular and extracellular interactions are important to their pathophysiology. Here, we develop a 3D multicompartment assembloid model of the fallopian tube that molecularly, functionally, and architecturally resembles the organ. Global label-free proteomics, innovative assays capturing physiological functions of the fallopian tube (i.e., oocyte transport), and whole-organ single-cell resolution mapping are used to validate these assembloids through a multifaceted platform with direct comparisons to fallopian tube tissue. These techniques converge at a unique combination of assembloid parameters with the highest similarity to the reference fallopian tube. This work establishes (i) an optimized model of the human fallopian tubes for in vitro studies of their pathophysiology and (ii) an iterative platform for customized 3D in vitro models of human organs that are molecularly, functionally, and microanatomically accurate by combining tunable assembloid and tissue mapping methods.


Subject(s)
Fallopian Tubes , Humans , Female , Fallopian Tubes/anatomy & histology , Fallopian Tubes/metabolism , Imaging, Three-Dimensional/methods , Proteomics/methods , Models, Biological , Single-Cell Analysis/methods
8.
Water Res ; 267: 122507, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39342713

ABSTRACT

Nitrate dynamics within a catchment are critical to the earth's system process, yet the intricate details of its transport and transformation at high resolutions remain elusive. Hydrological effects on nitrate dynamics in particular have not been thoroughly assessed previously and this knowledge gap hampers our understanding and effective management of nitrogen cycling in watersheds. Here, machine learning (ML) models were employed to reconstruct the annual variation trend in nitrate dynamics and isotopes within a typical karst catchment. Random forest model demonstrates promising potential in predicting nitrate concentration and its isotopes, surpassing other ML models (including Long Short-term Memory, Convolutional Neural Network, and Support Vector Machine) in performance. The ML-modeled NO3--N concentrations, δ15N-NO3-, and δ18O-NO3- values were in close agreement with field data (NSE values of 0.95, 0.80, and 0.53, respectively), which are notably challenging to achieve for process models. During the transition from dry to wet period, approximately 23.0 % of the annual precipitation (∼269.1 mm) was identified as the threshold for triggering a rapid response in the wet period. The modeled nitrate isotope values were significantly supported by the field data, suggesting seasonal variations of nitrogen sources, with precipitation as the primary driving force for fertilizer sources. Mixing of multiple sources appeared to be the main control of the transport and transformation of nitrate during the rising limb in the wet period, whereas process control (denitrification) took precedence during the falling limb, and the fate of nitrate was controlled by biogeochemical processes during the dry period.

9.
Cell ; 187(18): 4829-4830, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39241744

ABSTRACT

Homologous-recombination deficiency in DNA repair characterizes a unique group of cancers that are vulnerable to PARP inhibitors and cytotoxic chemotherapy. In this issue of Cell, Luo et al., demonstrated that this genetic attribute in cancer cells may reprogram tumor immune microenvironment and show promise of targeting effector-Treg cells.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Tumor Microenvironment , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Animals
10.
Nat Commun ; 15(1): 7628, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223125

ABSTRACT

The Permo-Triassic mass extinction was linked to catastrophic environmental changes and large igneous province (LIP) volcanism. In addition to the widespread marine losses, the Permo-Triassic event was the most severe terrestrial ecological crisis in Earth's history and the only known mass extinction among insects, but the cause of extinction on land remains unclear. In this study, high-resolution Hg concentration records and multiple-archive S-isotope analyses of sediments from the Junggar Basin (China) provide evidence of repeated pulses of volcanic-S (acid rain) and increased Hg loading culminating in a crisis of terrestrial biota in the Junggar Basin coeval with the interval of LIP emplacement. Minor S-isotope analyses are, however, inconsistent with total ozone layer collapse. Our data suggest that LIP volcanism repeatedly stressed end-Permian terrestrial environments in the ~300 kyr preceding the marine extinction locally via S-driven acidification and deposition of Hg, and globally via pulsed addition of CO2.


Subject(s)
Extinction, Biological , Geologic Sediments , Volcanic Eruptions , China , Animals , Mercury/analysis , Sulfur Isotopes/analysis
11.
Mult Scler Relat Disord ; 91: 105857, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39288565

ABSTRACT

PURPOSE: The retinal microvascular network plays a crucial role in inflammatory injury in paediatric optic neuritis (PON) with serum MOG antibody positivity (MOG + PON). This study compared retinal microvascular densities and structural alterations in MOG + PON eyes with paediatric isolated optic neuritis (PION) eyes and followed up with the final best-corrected visual acuity (BCVA) after 6 months. METHODS: A total of 29 children (52 eyes) with PON, including 15 MOG + PON cases (28 eyes), 6 PION cases (10 eyes), 2 neuromyelitis optica spectrum disorders associated PON(NMOSD-PON) cases (4 eyes), 6 MOG-associated disease (MOGAD) patients without ON-affected eyes (MOG + NPON) cases (10 eyes) and age- and gender-matched healthy controls (HCs) underwent superficial/deep retinal angiography density (SAD/DAD) by optical coherence tomography angiography (OCTA). Their BCVAs were followed up until 6 months after PON onsets. RESULTS: MOG + PON cases had better final BCVAs than PION and NMOSD-ON. MOG + PON (35.7 ± 10.3 %) and PION (40.1 ± 10.3 %) eyes experienced severe SAD reductions in contrast to MOGAD+NPON (48.7 ± 5.2 %) and HCs eyes (55.6 ± 8.2 %). However, DAD in MOG + PON eyes (48.5 ± 9.2 %) and MOG + NPON eyes (53.1 ± 3.3 %) increased compared to HC eyes (45.7 ± 9.6 %; p = 0.028 and 0.009, respectively). SAD reduction occurred in acute PON and was detected as early as 2 weeks after PON onset. CONCLUSIONS: MOG + PON eyes had better final BCVAs than PION eyes, which displayed superficial retinal microvascular perfusion reductions and deep microvascular perfusion increases. SAD could be a sensitive surrogate for PON attacks in children with MOGAD.

12.
RNA Biol ; 21(1): 29-45, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39256954

ABSTRACT

Adar-mediated adenosine-to-inosine (A-to-I) mRNA editing is a conserved mechanism that exerts diverse regulatory functions during the development, evolution, and adaptation of metazoans. The accurate detection of RNA editing sites helps us understand their biological significance. In this work, with an improved genome assembly of honeybee (Apis mellifera), we used a new orthology-based methodology to complement the traditional pipeline of (de novo) RNA editing detection. Compared to the outcome of traditional pipeline, we retrieved many novel editing sites in CDS that are deeply conserved between honeybee and other distantly related insects. The newly retrieved sites were missed by the traditional de novo identification due to the stringent criteria for controlling false-positive rate. Caste-specific editing sites are identified, including an Ile>Met auto-recoding site in Adar. This recoding was even conserved between honeybee and bumblebee, suggesting its putative regulatory role in shaping the phenotypic plasticity of eusocial Hymenoptera. In summary, we proposed a complementary approach to the traditional pipeline and retrieved several previously unnoticed CDS editing sites. From both technical and biological aspects, our works facilitate future researches on finding the functional editing sites and advance our understanding on the connection between RNA editing and the great phenotypic diversity of organisms.


Subject(s)
Adenosine , Evolution, Molecular , Inosine , RNA Editing , Animals , Inosine/genetics , Inosine/metabolism , Bees/genetics , Adenosine/metabolism , Adenosine/genetics , Conserved Sequence , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism
14.
Front Microbiol ; 15: 1454670, 2024.
Article in English | MEDLINE | ID: mdl-39296291

ABSTRACT

Introduction: Corm rot in saffron (Crocus sativus L.) significantly impacts yield and quality. Non-toxic fungi, particularly Trichoderma species, are valuable for biological control due to their production of diverse and biologically active secondary metabolites. Methods: This study aimed to isolate an effective antagonistic fungus against the pathogenic fungi causing corm rot in saffron. Four pathogenic fungi (Fusarium oxysporum, Fusarium solani, Penicillium citreosulfuratum, and Penicillium citrinum) were isolated from diseased saffron bulbs in Chongming. Initial screening through dual culture with these pathogens re-screening from rhizosphere soil samples of C. sativus based on its inhibitory effects through volatile, nonvolatile, and fermentation broth metabolites. The inhibitory effect of biocontrol fungi on pathogenic fungi in vitro was evaluated by morphological observation and molecular biology methods. Results: Antagonistic fungi were identified as Trichoderma brevicompactum DTN19. F. oxysporum was identified as the most severe pathogen. SEM (scanning electron microscope) and TEM (transmission electron microscope) observations revealed that T. brevicompactum DTN19 significantly inhibited the growth and development of F. oxysporum mycelium, disrupting its physiological structure and spore formation. Additionally, T. brevicompactum DTN19 demonstrated nitrogen fixation and production of cellulase, IAA (Indole acetic acid), and siderophores. Whole-genome sequencing of strain DTN19 revealed genes encoding protease, cellulase, chitinase, ß-glucosidase, siderophore, nitrogen cycle, and sulfate transporter-related proteins. Discussion: T. brevicompactum DTN19 may inhibit the propagation of pathogenic fungi by destroying their cell walls or producing antibiotics. It can also produce IAA and iron carriers, which have the potential to promote plant growth. Overall, T. brevicompactum DTN19 showed the development prospect of biological agents.

15.
Nat Prod Res ; : 1-7, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222481

ABSTRACT

Excessive alcohol consumption is leading to increased rates of liver injury and disease. A new research strategy focuses on manipulating gut microbiota to lessen alcohol-induced harm. This study examined the hepatoprotective effects of extracts from Acanthus ilicifolius (EAI) on acute alcoholic liver injury by inhibiting the TLR4/NF-κB signalling pathway and modulating intestinal microbiota in mice. The results showed that EAI dose-dependently reduced alcohol-induced elevations of AST, ALT, and ALP levels. EAI showed significant inhibitory effects on the expressions of TLR4, NF-κB, and pNF-κB proteins. Furthermore, EAI caused a notable reduction in hepatic levels of IL-1ß, IL-6, and TNF-α. Supplementation with EAI could ameliorate alcohol-induced dysbiosis of intestinal bacteria. The levels of ALT, AST, and ALP levels were negatively correlated with Ligilactobacillus, Lactobacillus, and Alistipes, but positively correlated with Helicobacter and Bacteroides. Overall, EAI alleviated alcoholic liver injury in mice by inhibiting the TLR4/NF-κB signalling pathway and modulating intestinal bacteria.

16.
Water Sci Technol ; 89(2): 357-367, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39219135

ABSTRACT

Estimating ecological environmental flow in tidal rivers is one of the major challenges for sustainable water resource management in estuaries and river basins. This paper presents an ecological environmental flow framework that was developed to accommodate highly dynamic medium tidal estuaries found along the Yellow Sea coast of China. The framework not only proposes a method of water quality-based ecological flow for tidal gate-controlled rivers but also proposes a method of water demand for scouring and silting to protect ports in coastal viscous sediment environments. The framework integrates the instream water requirements of water quality, sediment and basic ecological flow, and considers the temporal and spatial variation differences for the environmental flow requirements of tidal rivers. This study emphasizes the significance and necessity of continuous monitoring of ecological data in determining the environmental flow of tidal rivers. The output of this study could provide vital references for decision-making and management of the water resource allocation and ecological protection in tidal rivers.


Subject(s)
Rivers , Water Movements , China , Environmental Monitoring/methods , Water Quality , Ecosystem , Models, Theoretical
17.
Article in English | MEDLINE | ID: mdl-39236704

ABSTRACT

Introduction This systematic review and meta-analysis evaluated the quality of life (QoL) for nasopharyngeal carcinoma (NPC) patients with radiotherapy. Methods A systematic literature search was performed to identify relevant studies published until March 2022. Quality evaluation and data extraction were performed for the included studies, and meta-analysis was performed using Stata. Results Nine studies, including 1659 patients, were eligible. Most QoL scales developed at the end of the treatment course and then followed by a gradual recovery to 1 year and more than 1 year after treatment. However, some items have not changed significantly and have a deteriorating trend. Items of cognitive functioning and constipation in EORTC QLQ-C30, and sexuality, felt ill, and weight gain in EORTC QLQ- H&N35 showed that scales with follow-up of more than 1 year were worse than those within 1 year but still better than those after treatment. In the intensity-modulated radiotherapy (IMRT) subgroup in EORTC QLQ-C30, cognitive functioning was similar to those before, and there was no significant change in insomnia. There was no significant change in the teeth item in EORTC QLQ- H&N35. In the IMRT subgroup, scales of swallowing, felt ill, and weight gain with follow-up of more than 1 year were worse than those within 1 year. Conclusion The QoL of patients with NPC is significantly impaired after radiotherapy-treated compared to baseline, and most of these items will gradually improve.

18.
Calcif Tissue Int ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237690

ABSTRACT

Lipid accumulation product (LAP) has a positive effect on spinal bone mineral density (BMD). However, once LAP levels exceed 27.26, the rate of spinal BMD increase slow down or even decline. This indicates a biphasic relationship between lipid metabolism and BMD, suggesting potential benefits within a certain range and possible adverse effects beyond that range. This study aimed to investigate the potential association between LAP index and BMD in US adults, as well as to explore the presence of a potential saturation effect in this relationship. This study analyzed data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2007 to 2018. A multiple stepwise regression model was employed to examine the association between LAP index and total spinal BMD. Additionally, a generalized additive model and a smooth curve fitting algorithm were utilized to examine the relationship, and saturation effect study was conducted to determine the saturation level. The calculation formula of LAP used in the study was: (LAP = (waist circumstances (WC) (cm) - 58) × triglyceride (TG) (mmol/L)) for women, and (LAP = (WC (cm) - 65) × TG (mmol/L)) for men. The study involved a total of 7913 participants aged 20 years or older. Through multiple stepwise regression analysis, it was found that individuals with higher LAP scores exhibited higher total spinal BMD. In both the crude and partially adjusted models, total spinal BMD was significantly higher in the highest LAP quartile (Q4) compared to the lowest LAP quartile (Q1) (P < 0.05). Utilizing a generalized additive model and smooth curve, a nonlinear relationship between LAP and total spinal BMD was observed. Furthermore, the study identified the saturation value of LAP to be 27.26, indicating a saturation effect. This research highlights a nonlinear relationship between LAP and total spinal BMD, along with the presence of a saturation effect.

19.
Mikrochim Acta ; 191(10): 570, 2024 09 02.
Article in English | MEDLINE | ID: mdl-39218927

ABSTRACT

Loofah sponge-like carbon nanofibers (LF-Co,N/CNFs) were utilized as a carrier for Ru(bpy)32+, and then combined with CdS to create a novel solid-state electrochemiluminescence sensor capable of detecting trace amounts of fenpropathrin. LF-Co,N/CNFs, obtained through the high-temperature pyrolysis of ZIF-67 coaxial electrospinning fibers, were characterized by a loofah-like morphology and exhibited a significant specific surface area and porosity. Apart from serving as a carrier, LF-Co,N/CNFs also functioned as a luminescence accelerator, enhancing the system's luminescence efficiency by facilitating electron transmission and reducing the transmission distance. The inclusion of CdS in the luminescence reaction, in conjunction with Ru(bpy)32+, further boosted the sensor's luminescence signal. The resulting sensor demonstrated a satisfactory signal, with fenpropathrin causing significant quenching of the ECL signal. Under optimized conditions, a linear relationship between the signal quench value and fenpropathrin concentration in the range 1 × 10-12 to 1 × 10-6 M was observed, with a detection limit of 3.3 × 10-13 M (S/N = 3). This developed sensor is characterized by its simplicity, sensitivity, and successful application in detecting fenpropathrin in real samples. The study not only presents a straightforward detection platform for fenpropathrin but also introduces new avenues for the rapid determination of various food contaminants, thereby expanding the utility of carbon fibers in electrochemiluminescence sensors.


Subject(s)
Carbon , Electrochemical Techniques , Limit of Detection , Luminescent Measurements , Nanofibers , Nanofibers/chemistry , Luminescent Measurements/methods , Carbon/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Animals , Food Contamination/analysis , Cadmium Compounds/chemistry , Pyrethrins/analysis , Organometallic Compounds
20.
Environ Pollut ; 362: 124993, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303937

ABSTRACT

In order to understand the transfer of macroelements and toxic metals in the terrestrial food web, barn swallows, terrestrial frogs, and insects were collected from farmlands in the Leizhou Peninsula, and analyzed for macroelements carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) and trace metals nickel (Ni), zinc (Zn), selenium (Se), copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb), and mercury (Hg). The multi-element ecological stoichiometry was discussed to trace the food web flow of nutrients and toxicants. The percentage contents of C, N, P, and S were 35.43-59.91%, 6.89-12.11%, 0.49-4.66%, and 0.44-2.19%, respectively. The concentrations of Ni, Zn, Se, Cu, Cr, Cd, Pb, and Hg were 0.163-116 mg/kg, 38.7-227 mg/kg, 0.0453-3.82 mg/kg, 3.11-141 mg/kg, not detected-79.6 mg/kg, 0.0203-0.358 mg/kg, 0.148-4.57 mg/kg, and 0.00159-1.46 mg/kg, respectively. Organisms at high trophic levels had higher contents of N, P, and S, and lower contents of C. Significant correlations were observed between δ15N and ratios of C: N, C: P, C: S, N: P, N: S, and S: P, indicating selective transfer of biogenic elements for predators in the terrestrial food web. Most metals including Ni, Zn, Se, Cu, Cr, Pb, and Hg had biomagnification factors and trophic magnification factors higher than 1, because the whole body of organisms rather than tissues were used. The negative correlations between the detoxification ratios of Se: X (each toxic metal) and metal concentrations suggest potential adverse effect of metals on terrestrial organisms.

SELECTION OF CITATIONS
SEARCH DETAIL