Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 88(21): 10395-10403, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27673369

ABSTRACT

Two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) is superior for chromatographic separation and provides great sensitivity for complex biological fluid analysis in metabolomics. However, GC×GC/TOF-MS data processing is currently limited to vendor software and typically requires several preprocessing steps. In this work, we implement a web-based platform, which we call GC2MS, to facilitate the application of recent advances in GC×GC/TOF-MS, especially for metabolomics studies. The core processing workflow of GC2MS consists of blob/peak detection, baseline correction, and blob alignment. GC2MS treats GC×GC/TOF-MS data as pictures and clusters the pixels as blobs according to the brightness of each pixel to generate a blob table. GC2MS then aligns the blobs of two GC×GC/TOF-MS data sets according to their distance and similarity. The blob distance and similarity are the Euclidean distance of the first and second retention times of two blobs and the Pearson's correlation coefficient of the two mass spectra, respectively. GC2MS also directly corrects the raw data baseline. The analytical performance of GC2MS was evaluated using GC×GC/TOF-MS data sets of Angelica sinensis compounds acquired under different experimental conditions and of human plasma samples. The results show that GC2MS is an easy-to-use tool for detecting peaks and correcting baselines, and GC2MS is able to align GC×GC/TOF-MS data sets acquired under different experimental conditions. GC2MS is freely accessible at http://gc2ms.web.cmdm.tw .


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Algorithms , Angelica sinensis/chemistry , Angelica sinensis/metabolism , Humans , Internet , Plasma/chemistry , Plasma/metabolism , Software , Workflow
2.
BMC Syst Biol ; 7: 64, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23875761

ABSTRACT

BACKGROUND: Integrative and comparative analyses of multiple transcriptomics, proteomics and metabolomics datasets require an intensive knowledge of tools and background concepts. Thus, it is challenging for users to perform such analyses, highlighting the need for a single tool for such purposes. The 3Omics one-click web tool was developed to visualize and rapidly integrate multiple human inter- or intra-transcriptomic, proteomic, and metabolomic data by combining five commonly used analyses: correlation networking, coexpression, phenotyping, pathway enrichment, and GO (Gene Ontology) enrichment. RESULTS: 3Omics generates inter-omic correlation networks to visualize relationships in data with respect to time or experimental conditions for all transcripts, proteins and metabolites. If only two of three omics datasets are input, then 3Omics supplements the missing transcript, protein or metabolite information related to the input data by text-mining the PubMed database. 3Omics' coexpression analysis assists in revealing functions shared among different omics datasets. 3Omics' phenotype analysis integrates Online Mendelian Inheritance in Man with available transcript or protein data. Pathway enrichment analysis on metabolomics data by 3Omics reveals enriched pathways in the KEGG/HumanCyc database. 3Omics performs statistical Gene Ontology-based functional enrichment analyses to display significantly overrepresented GO terms in transcriptomic experiments. Although the principal application of 3Omics is the integration of multiple omics datasets, it is also capable of analyzing individual omics datasets. The information obtained from the analyses of 3Omics in Case Studies 1 and 2 are also in accordance with comprehensive findings in the literature. CONCLUSIONS: 3Omics incorporates the advantages and functionality of existing software into a single platform, thereby simplifying data analysis and enabling the user to perform a one-click integrated analysis. Visualization and analysis results are downloadable for further user customization and analysis. The 3Omics software can be freely accessed at http://3omics.cmdm.tw.


Subject(s)
Gene Expression Profiling/methods , Internet , Metabolomics/methods , Proteomics/methods , Statistics as Topic/methods , Systems Biology/methods , Apoptosis/drug effects , Arsenic Trioxide , Arsenicals/pharmacology , Cell Differentiation/drug effects , Cell Line, Tumor , Humans , Leukemia, Promyelocytic, Acute/pathology , Oxides/pharmacology , Tretinoin/pharmacology , Urinalysis
3.
Chem Res Toxicol ; 25(3): 676-86, 2012 Mar 19.
Article in English | MEDLINE | ID: mdl-22292500

ABSTRACT

The complex composition of welding fumes, multiplicity of molecular targets, diverse cellular effects, and lifestyles associated with laborers vastly complicate the assessment of welding fume exposure. The urinary metabolomic profiles of 35 male welders and 16 male office workers at a Taiwanese shipyard were characterized via (1)H NMR spectroscopy and pattern recognition methods. Blood samples for the same 51 individuals were also collected, and the expression levels of the cytokines and other inflammatory markers were examined. This study dichotomized the welding exposure variable into high (welders) versus low (office workers) exposures to examine the differences of continuous outcome markers-metabolites and inflammatory markers-between the two groups. Fume particle assessments showed that welders were exposed to different concentrations of chromium, nickel, and manganese particles. Multivariate statistical analysis of urinary metabolomic patterns showed higher levels of glycine, taurine, betaine/TMAO, serine, S-sulfocysteine, hippurate, gluconate, creatinine, and acetone and lower levels of creatine among welders, while only TNF-α was significantly associated with welding fume exposure among all cytokines and other inflammatory markers measured. Of the identified metabolites, the higher levels of glycine, taurine, and betaine among welders were suspected to play some roles in modulating inflammatory and oxidative tissue injury processes. In this metabolomics experiment, we also discovered that the association of the identified metabolites with welding exposure was confounded by smoking, but not with drinking, which is a finding consistent with known modified response of inflammatory markers among smokers. Our results correspond with prior studies that utilized nonmetabolomic analytical techniques and suggest that the metabolomic profiling is an efficient method to characterize the overall effect of welding fume exposure and other confounders.


Subject(s)
Air Pollutants, Occupational , Metals, Heavy , Occupational Exposure/analysis , Air Pollutants, Occupational/analysis , Alcohol Drinking/metabolism , Biomarkers/blood , Biomarkers/urine , Cytokines/metabolism , Environmental Monitoring , Humans , Leukocyte Count , Magnetic Resonance Spectroscopy , Male , Metabolomics , Metals, Heavy/analysis , Multivariate Analysis , Nasal Lavage Fluid/cytology , Smoking/metabolism , Taiwan , Welding
SELECTION OF CITATIONS
SEARCH DETAIL