Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
J Vis Exp ; (189)2022 11 11.
Article En | MEDLINE | ID: mdl-36440839

Degenerative disorders of the retina (including age-related macular degeneration), which originate primarily at or within the retinal pigmented epithelial (RPE) layer, lead to a progressive disorganization of the retinal anatomy and the deterioration of visual function. The substitution of damaged RPE cells (RPEs) with in vitro cultured RPE cells using a subretinal cell carrier has shown potential for re-establishing the anatomical structure of the outer retinal layers and is, therefore, being further studied. Here, we present the principles of a surgical technique that allows for the effective subretinal transplantation of a cell carrier with cultivated RPEs into minipigs. The surgeries were performed under general anesthesia and included a standard lens-sparing three-port pars plana vitrectomy (PPV), subretinal application of a balanced salt solution (BSS), a 2.7 mm retinotomy, implantation of a nanofibrous cell carrier into the subretinal space through an additional 3.0 mm sclerotomy, fluid-air exchange (FAX), silicone oil tamponade, and closure of all the sclerotomies. This surgical approach was used in 29 surgeries (18 animals) over the past 8 years with a success rate of 93.1%. Anatomic verification of the surgical placement was carried out using in vivo fundus imaging (fundus photography and optical coherence tomography). The recommended surgical steps for the subretinal implantation of RPEs on a carrier in minipig eyes can be used in future preclinical studies using large-eye animal models.


Retinal Pigment Epithelium , Vitrectomy , Humans , Animals , Swine , Swine, Miniature , Postoperative Care , Vitrectomy/methods , Retinal Pigment Epithelium/surgery , Retina/surgery
2.
Biomolecules ; 12(10)2022 Oct 21.
Article En | MEDLINE | ID: mdl-36291741

Purpose: Retinal ischemia (RI) and progressive neuronal death are sight-threatening conditions. Mitochondrial (mt) dysfunction and fusion/fission processes have been suggested to play a role in the pathophysiology of RI. This study focuses on changes in the mt parameters of the neuroretina, retinal pigment epithelium (RPE) and choroid in a porcine high intraocular pressure (IOP)-induced RI minipig model. Methods: In one eye, an acute IOP elevation was induced in minipigs and compared to the other control eye. Activity and amount of respiratory chain complexes (RCC) were analyzed by spectrophotometry and Western blot, respectively. The coenzyme Q10 (CoQ10) content was measured using HPLC, and the ultrastructure of the mt was studied via transmission electron microscopy. The expression of selected mt-pathway genes was determined by RT-PCR. Results: At a functional level, increased RCC I activity and decreased total CoQ10 content were found in RPE cells. At a protein level, CORE2, a subunit of RCC III, and DRP1, was significantly decreased in the neuroretina. Drp1 and Opa1, protein-encoding genes responsible for mt quality control, were decreased in most of the samples from the RPE and neuroretina. Conclusions: The eyes of the minipig can be considered a potential RI model to study mt dysfunction in this disease. Strategies targeting mt protection may provide a promising way to delay the acute damage and onset of RI.


Carcinoma, Renal Cell , Glaucoma , Kidney Neoplasms , Animals , Swine , Intraocular Pressure , Swine, Miniature , Carcinoma, Renal Cell/metabolism , Glaucoma/metabolism , Kidney Neoplasms/metabolism , Mitochondria/metabolism , Ischemia/metabolism
3.
Biomedicines ; 10(3)2022 Mar 14.
Article En | MEDLINE | ID: mdl-35327471

PURPOSE: The development of primary human retinal pigmented epithelium (hRPE) for clinical transplantation purposes on biodegradable scaffolds is indispensable. We hereby report the results of the subretinal implantation of hRPE cells on nanofibrous membranes in minipigs. METHODS: The hRPEs were collected from human cadaver donor eyes and cultivated on ultrathin nanofibrous carriers prepared via the electrospinning of poly(L-lactide-co-DL-lactide) (PDLLA). "Libechov" minipigs (12-36 months old) were used in the study, supported by preoperative tacrolimus immunosuppressive therapy. The subretinal implantation of the hRPE-nanofibrous carrier was conducted using general anesthesia via a custom-made injector during standard three-port 23-gauge vitrectomy, followed by silicone oil endotamponade. The observational period lasted 1, 2, 6 and 8 weeks, and included in vivo optical coherence tomography (OCT) of the retina, as well as post mortem immunohistochemistry using the following antibodies: HNAA and STEM121 (human cell markers); Bestrophin and CRALBP (hRPE cell markers); peanut agglutining (PNA) (cone photoreceptor marker); PKCα (rod bipolar marker); Vimentin, GFAP (macroglial markers); and Iba1 (microglial marker). RESULTS: The hRPEs assumed cobblestone morphology, persistent pigmentation and measurable trans-epithelial electrical resistance on the nanofibrous PDLLA carrier. The surgical delivery of the implants in the subretinal space of the immunosuppressed minipigs was successfully achieved and monitored by fundus imaging and OCT. The implanted hRPEs were positive for HNAA and STEM121 and were located between the minipig's neuroretina and RPE layers at week 2 post-implantation, which was gradually attenuated until week 8. The neuroretina over the implants showed rosette or hypertrophic reaction at week 6. The implanted cells expressed the typical RPE marker bestrophin throughout the whole observation period, and a gradual diminishing of the CRALBP expression in the area of implantation at week 8 post-implantation was observed. The transplanted hRPEs appeared not to form a confluent layer and were less capable of keeping the inner and outer retinal segments intact. The cone photoreceptors adjacent to the implant scaffold were unchanged initially, but underwent a gradual change in structure after hRPE implantation; the retina above and below the implant appeared relatively healthy. The glial reaction of the transplanted and host retina showed Vimentin and GFAP positivity from week 1 onward. Microglial activation appeared in the retinal area of the transplant early after the surgery, which seemed to move into the transplant area over time. CONCLUSIONS: The differentiated hRPEs can serve as an alternative cell source for RPE replacement in animal studies. These cells can be cultivated on nanofibrous PDLLA and implanted subretinally into minipigs using standard 23-gauge vitrectomy and implantation injector. The hRPE-laden scaffolds demonstrated relatively good incorporation into the host retina over an eight-week observation period, with some indication of a gliotic scar formation, and a likely neuroinflammatory response in the transplanted area despite the use of immunosuppression.

4.
Acta Ophthalmol ; 100(5): e1172-e1185, 2022 Aug.
Article En | MEDLINE | ID: mdl-34687141

PURPOSE: Dysfunction of the retinal pigment epithelium (RPE) causes numerous forms of retinal degeneration. RPE replacement is a modern option to save vision. We aimed to test the results of transplanting cultured RPEs on biocompatible membranes. METHODS: We cultivated porcine primary RPE cells isolated from cadaver eyes from the slaughterhouse on two types of membranes: commercial polyester scaffolds Transwell (Corning Inc., Kenneburg, ME, USA) with 0.4 µm pore size and prepared Poly (L-lactide-co-DL-lactide) (PDLLA) nanofibrous membranes with an average pore size of 0.4 µm. RESULTS: Five types of assays were used for the analysis: immunocytochemistry (ICC), phagocytosis assay, Western blotting, real-time qPCR (RT-qPCR) and electron microscopy. RT-qPCR demonstrated that RPEs cultured on nanofibrous membranes have higher expressions of BEST1 (bestrophin 1), RLBP1 (retinaldehyde-binding protein 1), RPE65 (retinal pigment epithelium-specific 65 kDa protein), PAX6 (transcription factor PAX6), SOX9 (transcription factor SOX9), DCT (dopachrome tautomerase) and MITF (microphthalmia-associated transcription factor). ICC of the RPEs cultured on nanofibrous membranes showed more intensive staining of markers such as BEST1, MCT1 (monocarboxylate transporter 1), Na+ /K+ ATPase, RPE65 and acetylated tubulin in comparison with commercial ones. Additionally, the absence of α-SMA proved the stability of the RPE polarization state and the absence of epithelial-to-mesenchymal transition. RPE possessed high phagocytic activity. Electron microscopy of both membranes confirmed a confluent layer of RPE cells and their genuine morphological structure, which was comparable to native RPEs. CONCLUSIONS: Retinal pigment epitheliums cultured on polylactide nanofibrous membranes improved the final quality of the cell product by having better maturation and long-term survival of the RPE monolayer compared to those cultured on commercial polyester scaffolds. PDLLA-cultured RPEs are a plausible source for the replacement of non-functioning RPEs during cell therapy.


Nanofibers , Retinal Degeneration , Animals , Bestrophins/metabolism , Cells, Cultured , Nanofibers/chemistry , Polyesters/metabolism , Retinal Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , Swine
5.
J Mol Cell Cardiol ; 91: 92-103, 2016 Feb.
Article En | MEDLINE | ID: mdl-26724189

Dexrazoxane (DEX) is a clinically available cardioprotectant that reduces the toxicity induced by anthracycline (ANT) anticancer drugs; however, DEX is seldom used and its action is poorly understood. Inorganic nitrate/nitrite has shown promising results in myocardial ischemia-reperfusion injury and recently in acute high-dose ANT cardiotoxicity. However, the utility of this approach for overcoming clinically more relevant chronic forms of cardiotoxicity remains elusive. Hence, in this study, the protective potential of inorganic nitrate and nitrite against chronic ANT cardiotoxicity was investigated, and the results were compared to those using DEX. Chronic cardiotoxicity was induced in rabbits with daunorubicin (DAU). Sodium nitrate (1g/L) was administered daily in drinking water, while sodium nitrite (0.15 or 5mg/kg) or DEX (60mg/kg) was administered parenterally before each DAU dose. Although oral nitrate induced a marked increase in plasma NOx, it showed no improvement in DAU-induced mortality, myocardial damage or heart failure. Instead, the higher nitrite dose reduced the incidence of end-stage cardiotoxicity, prevented related premature deaths and significantly ameliorated several molecular and cellular perturbations induced by DAU, particularly those concerning mitochondria. The latter result was also confirmed in vitro. Nevertheless, inorganic nitrite failed to prevent DAU-induced cardiac dysfunction and molecular remodeling in vivo and failed to overcome the cytotoxicity of DAU to cardiomyocytes in vitro. In contrast, DEX completely prevented all of the investigated molecular, cellular and functional perturbations that were induced by DAU. Our data suggest that the difference in cardioprotective efficacy between DEX and inorganic nitrite may be related to their different abilities to address a recently proposed upstream target for ANT in the heart - topoisomerase IIß.


Cardiotonic Agents/pharmacology , Cardiotoxicity/prevention & control , Dexrazoxane/pharmacology , Nitrates/pharmacology , Sodium Nitrite/pharmacology , Animals , Antibiotics, Antineoplastic/adverse effects , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Daunorubicin/adverse effects , Drug Administration Schedule , Infusions, Intravenous , Male , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rabbits
6.
PLoS One ; 9(2): e88754, 2014.
Article En | MEDLINE | ID: mdl-24586383

Recent studies have demonstrated that several chelators possess marked potential as potent anti-neoplastic drugs and as agents that can ameliorate some of the adverse effects associated with standard chemotherapy. Anti-cancer treatment employs combinations of several drugs that have different mechanisms of action. However, data regarding the potential interactions between iron chelators and established chemotherapeutics are lacking. Using estrogen receptor-positive MCF-7 breast cancer cells, we explored the combined anti-proliferative potential of four iron chelators, namely: desferrioxamine (DFO), salicylaldehyde isonicotinoyl hydrazone (SIH), (E)-N'-[1-(2-hydroxy-5-nitrophenyl)ethyliden] isonicotinoyl hydrazone (NHAPI), and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), plus six selected anti-neoplastic drugs. These six agents are used for breast cancer treatment and include: paclitaxel, 5-fluorouracil, doxorubicin, methotrexate, tamoxifen and 4-hydroperoxycyclophosphamide (an active metabolite of cyclophosphamide). Our quantitative chelator-drug analyses were designed according to the Chou-Talalay method for drug combination assessment. All combinations of these agents yielded concentration-dependent, anti-proliferative effects. The hydrophilic siderophore, DFO, imposed antagonism when used in combination with all six anti-tumor agents and this antagonistic effect increased with increasing dose. Conversely, synergistic interactions were observed with combinations of the lipophilic chelators, NHAPI or Dp44mT, with doxorubicin and also the combinations of SIH, NHAPI or Dp44mT with tamoxifen. The combination of Dp44mT with anti-neoplastic agents was further enhanced following formation of its redox-active iron and especially copper complexes. The most potent combinations of Dp44mT and NHAPI with tamoxifen were confirmed as synergistic using another estrogen receptor-expressing breast cancer cell line, T47D, but not estrogen receptor-negative MDA-MB-231 cells. Furthermore, the synergy of NHAPI and tamoxifen was confirmed using MCF-7 cells by electrical impedance data, a mitochondrial inner membrane potential assay and cell cycle analyses. This is the first systematic investigation to quantitatively assess interactions between Fe chelators and standard chemotherapies using breast cancer cells. These studies are vital for their future clinical development.


Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Proliferation/drug effects , Iron Chelating Agents/pharmacology , Aldehydes/pharmacology , Cyclophosphamide/analogs & derivatives , Deferoxamine/pharmacology , Doxorubicin , Drug Synergism , Fluorouracil , Humans , Hydrazones/pharmacology , MCF-7 Cells , Methotrexate , Paclitaxel , Tamoxifen , Thiosemicarbazones/pharmacology
7.
PLoS One ; 8(10): e76676, 2013.
Article En | MEDLINE | ID: mdl-24116135

Anthracyclines (such as doxorubicin or daunorubicin) are among the most effective anticancer drugs, but their usefulness is hampered by the risk of irreversible cardiotoxicity. Dexrazoxane (ICRF-187) is the only clinically approved cardioprotective agent against anthracycline cardiotoxicity. Its activity has traditionally been attributed to the iron-chelating effects of its metabolite with subsequent protection from oxidative stress. However, dexrazoxane is also a catalytic inhibitor of topoisomerase II (TOP2). Therefore, we examined whether dexrazoxane and two other TOP2 catalytic inhibitors, namely sobuzoxane (MST-16) and merbarone, protect cardiomyocytes from anthracycline toxicity and assessed their effects on anthracycline antineoplastic efficacy. Dexrazoxane and two other TOP2 inhibitors protected isolated neonatal rat cardiomyocytes against toxicity induced by both doxorubicin and daunorubicin. However, none of the TOP2 inhibitors significantly protected cardiomyocytes in a model of hydrogen peroxide-induced oxidative injury. In contrast, the catalytic inhibitors did not compromise the antiproliferative effects of the anthracyclines in the HL-60 leukemic cell line; instead, synergistic interactions were mostly observed. Additionally, anthracycline-induced caspase activation was differentially modulated by the TOP2 inhibitors in cardiac and cancer cells. Whereas dexrazoxane was upon hydrolysis able to significantly chelate intracellular labile iron ions, no such effect was noted for either sobuzoxane or merbarone. In conclusion, our data indicate that dexrazoxane may protect cardiomyocytes via its catalytic TOP2 inhibitory activity rather than iron-chelation activity. The differential expression and/or regulation of TOP2 isoforms in cardiac and cancer cells by catalytic inhibitors may be responsible for the selective modulation of anthracycline action observed.


Anthracyclines/pharmacology , Cell Proliferation/drug effects , Myocytes, Cardiac/drug effects , Topoisomerase II Inhibitors/pharmacology , Animals , Animals, Newborn , Biocatalysis/drug effects , Caspases/metabolism , Cell Cycle/drug effects , Cell Survival/drug effects , Cells, Cultured , DNA Topoisomerases, Type II/metabolism , Daunorubicin/pharmacology , Dexrazoxane/pharmacology , Doxorubicin/pharmacology , Drug Interactions , Flow Cytometry , Glutathione/metabolism , Glutathione Disulfide/metabolism , HL-60 Cells , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Piperazines/pharmacology , Rats , Rats, Wistar , Thiobarbiturates/pharmacology
8.
Bioorg Med Chem Lett ; 21(20): 6062-6, 2011 Oct 15.
Article En | MEDLINE | ID: mdl-21903391

A series of simple desmethoxy analogues of coruscanone A was prepared via a novel version of Ti(iPrO)(4)-mediated Knoevenagel condensation of cyclopentenedione with substituted benzaldehydes and cinnamic aldehydes, and the compounds were evaluated for antifungal activity and cytotoxicity. The most potent 2-benzylidenecyclopent-4-ene-1,3-dione possessed antifungal effect comparable to coruscanone A and a somewhat broader spectrum of activity against Candida species. The compound was also superior to fluconazole against several non-albicans Candida sp. Evaluation of the ability of the compound to influence cell proliferation using two different assays showed that 2-benzylidenecyclopent-4-ene-1,3-dione has lower cytotoxicity compared to the natural product.


Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Candida/drug effects , Cyclopentanes/chemical synthesis , Cyclopentanes/pharmacology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemical synthesis , 4-Butyrolactone/chemistry , 4-Butyrolactone/pharmacology , Animals , Antifungal Agents/chemistry , Candidiasis/drug therapy , Cell Line , Cell Line, Tumor , Cyclopentanes/chemistry , Humans , Mice , Microbial Sensitivity Tests , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 20(24): 7358-60, 2010 Dec 15.
Article En | MEDLINE | ID: mdl-21074433

A series of 3-aryl-5-acyloxymethyl-5,6-dihydro-2H-pyran-2-ones, related to highly antifungally active butenolides, was synthesized via cyclization of substituted δ-hydroxy acids as the key step, and evaluated for their in vitro antifungal activity and cytostatic activity. While the extension of the furanone ring to pyranone led to a complete loss of the antifungal effect, some of the compounds displayed promising effect against several cell lines, including the resistant colorectal carcinoma cells.


Antifungal Agents/chemistry , Cytostatic Agents/chemistry , Furans/chemistry , Pyrans/chemistry , Animals , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Cell Line, Tumor , Cytostatic Agents/chemical synthesis , Cytostatic Agents/pharmacology , Furans/chemical synthesis , Furans/pharmacology , Humans , Mice
10.
Bioorg Med Chem ; 18(5): 1988-2000, 2010 Mar 01.
Article En | MEDLINE | ID: mdl-20153653

5-Acetoxymethyl-3-(4-bromophenyl)-2,5-dihydrofuran-2-one previously described as highly antifungally active was found to provide the corresponding 5-methylene derivative via an unusual DMSO-promoted elimination of the ester group at C5 under antifungal assay conditions. Since the latter possessed nearly the same antifungal effect as that originally reported for the former, the 5-acetoxymethyl furanone just served as a precursor of the actual antifungally active species. A few series of compounds with alkyloxy, aryloxy and alkylidene substituents at C5 of the parent furanone structure were therefore prepared and evaluated. In line with the ease of elimination of the substituent from C5, low activities of the 5-alkoxy compounds were observed. On the other hand, their 5-aryloxymethyl congeners were found to be capable of liberating the antifungally active 5-methylene furanone into the testing medium. The antifungal effect of the 5-alkylidene derivatives was highly sensitive to substitution of the alkylidene moiety; a substituent in the allylic position was necessary for a compound to retain high activity. Parallel evaluation of cytostatic activity showed moderate activities of the antifungally active derivatives against HeLa S3 and CCRF-CEM lines. Cell cycle analysis of CCRF-CEM cells following the treatment with 5-methylene-3-(4-bromophenyl)-2,5-dihydrofuran-2-one revealed that this compound is a necrotic agent.


Antifungal Agents/chemistry , Cytostatic Agents/chemistry , Furans/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Apoptosis , Cell Line , Cytostatic Agents/chemical synthesis , Cytostatic Agents/pharmacology , Furans/chemical synthesis , Furans/pharmacology , HeLa Cells , Humans , Microbial Sensitivity Tests
...