Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters











Publication year range
1.
iScience ; 27(8): 110461, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39104409

ABSTRACT

Monoclonal antibodies have revolutionized therapies, but non-immunoglobulin scaffolds are becoming compelling alternatives owing to their adaptability. Their ability to be labeled with imaging or cytotoxic compounds and to create multimeric proteins is an attractive strategy for therapeutics. Focusing on HER2, a frequently overexpressed receptor in breast cancer, this study addresses some limitations of conventional targeting moieties by harnessing the potential of these scaffolds. HER2-binding Affimers were isolated and characterized, demonstrating potency as binding reagents and efficient internalization by HER2-overexpressing cells. Affimers conjugated with cytotoxic agent achieved dose-dependent reductions in cell viability within HER2-overexpressing cell lines. Bispecific Affimers, targeting HER2 and virus-like particles, facilitated efficient internalization of virus-like particles carrying enhanced green fluorescent protein (eGFP)-encoding RNA, leading to protein expression. Anti-HER2 affibody or designed ankyrin repeat protein (DARPin) fusion constructs with the anti-VLP Affimer further underscore the adaptability of this approach. This study demonstrates the versatility of scaffolds for precise delivery of cargos into cells, advancing biotechnology and therapeutic research.

2.
mBio ; 15(8): e0180424, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39037231

ABSTRACT

Influenza A virus (IAV) is well known for its pandemic potential. While current surveillance and vaccination strategies are highly effective, therapeutic approaches are often short-lived due to the high mutation rates of IAV. Recently, monoclonal antibodies (mAbs) have emerged as a promising therapeutic approach, both against current strains and future IAV pandemics. In addition to mAbs, several antibody-like alternatives exist, which aim to improve upon mAbs. Among these, Affimers stand out for their short development time, high expression levels in Escherichia coli, and animal-free production. In this study, we utilized the Affimer platform to isolate and produce specific and potent inhibitors of IAV. Using a monomeric version of the IAV trimeric hemagglutinin (HA) fusion protein, we isolated 12 Affimers that inhibit IAV infection in vitro. Two of these Affimers were characterized in detail and exhibited nanomolar-binding affinities to the target H3 HA protein, specifically binding to the HA1 head domain. Cryo-electron microscopy (cryo-EM), employing a novel spray approach to prepare cryo-grids, allowed us to image HA-Affimer complexes. Combined with functional assays, we determined that these Affimers inhibit IAV by blocking the interaction of HA with the host-cell receptor, sialic acid. Furthermore, these Affimers inhibited IAV strains closely related to the one used for their isolation. Overall, our results support the use of Affimers as a viable alternative to existing targeted therapies for IAV and highlight their potential as diagnostic reagents. IMPORTANCE: Influenza A virus is one of the few viruses that can cause devastating pandemics. Due to the high mutation rates of this virus, annual vaccination is required, and antivirals are short-lived. Monoclonal antibodies present a promising approach to tackle influenza virus infections but are associated with some limitations. To improve on this strategy, we explored the Affimer platform, which are antibody-like proteins made in bacteria. By performing phage-display against a monomeric version of influenza virus fusion protein, an established viral target, we were able to isolate Affimers that inhibit influenza virus infection in vitro. We characterized the mechanism of inhibition of the Affimers by using assays targeting different stages of the viral replication cycle. We additionally characterized HA-Affimer complex structure, using a novel approach to prepare samples for cryo-electron microscopy. Overall, these results show that Affimers are a promising tool against influenza virus infection.


Subject(s)
Cryoelectron Microscopy , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/drug effects , Influenza A virus/genetics , Humans , Animals , Antiviral Agents/pharmacology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/chemistry , Dogs , Influenza, Human/virology , Madin Darby Canine Kidney Cells
3.
Blood Adv ; 8(15): 3917-3928, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38838227

ABSTRACT

ABSTRACT: Glycoprotein VI (GPVI) plays a key role in collagen-induced platelet aggregation. Affimers are engineered binding protein alternatives to antibodies. We screened and characterized GPVI-binding Affimers as novel tools to probe GPVI function. Among the positive clones, M17, D22, and D18 bound GPVI with the highest affinities (dissociation constant (KD) in the nanomolar range). These Affimers inhibited GPVI-collagen-related peptide (CRP)-XL/collagen interactions, CRP-XL/collagen-induced platelet aggregation, and D22 also inhibited in vitro thrombus formation on a collagen surface under flow. D18 bound GPVI dimer but not monomer. GPVI binding was increased for D18 but not M17/D22 upon platelet activation by CRP-XL and adenosine 5'-diphosphate. D22 but not M17/D18 displaced nanobody 2 (Nb2) binding to GPVI, indicating similar epitopes for D22 with Nb2 but not for M17/D18. Mapping of binding sites revealed that D22 binds a site that overlaps with Nb2 on the D1 domain, whereas M17 targets a site on the D2 domain, overlapping in part with the glenzocimab binding site, a humanized GPVI antibody fragment antigen-binding fragment. D18 targets a new region on the D2 domain. We found that D18 is a stable noncovalent dimer and forms a stable complex with dimeric GPVI with 1:1 stoichiometry. Taken together, our data demonstrate that Affimers modulate GPVI-ligand interactions and bind different sites on GPVI D1/D2 domains. D18 is dimer-specific and could be used as a tool to detect GPVI dimerization or clustering in platelets. A dimeric epitope regulating ligand binding was identified on the GPVI D2 domain, which could be used for the development of novel bivalent antithrombotic agents selectively targeting GPVI dimer on platelets.


Subject(s)
Blood Platelets , Platelet Aggregation , Platelet Membrane Glycoproteins , Protein Binding , Protein Multimerization , Platelet Membrane Glycoproteins/metabolism , Platelet Membrane Glycoproteins/chemistry , Humans , Blood Platelets/metabolism , Ligands , Platelet Aggregation/drug effects , Binding Sites , Collagen/metabolism , Collagen/chemistry , Carrier Proteins , Peptides
4.
Sens Diagn ; 3(1): 104-111, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38249540

ABSTRACT

Concentration-therapeutic efficacy relationships have been observed for several therapeutic monoclonal antibodies (TmAb), where low circulating levels can result in ineffective treatment and high concentrations can cause adverse reactions. Rapid therapeutic drug monitoring (TDM) of TmAb drugs would provide the opportunity to adjust an individual patient's dosing regimen to improve treatment results. However, TDM for immunotherapies is currently limited to centralised testing methods with long sample-collection to result timeframes. Here, we show four point-of-care (PoC) TmAb biosensors by combining anti-idiotypic Affimer proteins and NanoBiT split luciferase technology at a molecular level to provide a platform for rapid quantification (<10 minutes) for four clinically relevant TmAb (rituximab, adalimumab, ipilimumab and trastuzumab). The rituximab sensor performed best with 4 pM limit of detection (LoD) and a quantifiable range between 8 pM-2 nM with neglectable matrix effects in serum up to 1%. After dilution of serum samples, the resulting quantifiable range for all four sensors falls within the clinically relevant range and compares favourably with the sensitivity and/or time-to-result of current ELISA standards. Further development of these sensors into a PoC test may improve treatment outcome and quality of life for patients receiving immunotherapy.

5.
J Biol Chem ; 299(11): 105325, 2023 11.
Article in English | MEDLINE | ID: mdl-37805141

ABSTRACT

In multicellular organisms, a variety of lipid-protein particles control the systemic flow of triacylglycerides, cholesterol, and fatty acids between cells in different tissues. The chemical modification by oxidation of these particles can trigger pathological responses, mediated by a group of membrane proteins termed scavenger receptors. The lectin-like oxidized low-density lipoprotein (LOX-1) scavenger receptor binds to oxidized low-density lipoprotein (oxLDL) and mediates both signaling and trafficking outcomes. Here, we identified five synthetic proteins termed Affimers from a phage display library, each capable of binding recombinant LOX-1 extracellular (oxLDL-binding) domain with high specificity. These Affimers, based on a phytocystatin scaffold with loop regions of variable sequence, were able to bind to the plasma membrane of HEK293T cells exclusively when human LOX-1 was expressed. Binding and uptake of fluorescently labeled oxLDL by the LOX-1-expressing cell model was inhibited with subnanomolar potency by all 5 Affimers. ERK1/2 activation, stimulated by oxLDL binding to LOX-1, was also significantly inhibited (p < 0.01) by preincubation with LOX-1-specific Affimers, but these Affimers had no direct agonistic effect. Molecular modeling indicated that the LOX-1-specific Affimers bound predominantly via their variable loop regions to the surface of the LOX-1 lectin-like domain that contains a distinctive arrangement of arginine residues previously implicated in oxLDL binding, involving interactions with both subunits of the native, stable scavenger receptor homodimer. These data provide a new class of synthetic tools to probe and potentially modulate the oxLDL/LOX-1 interaction that plays an important role in vascular disease.


Subject(s)
MAP Kinase Signaling System , Scavenger Receptors, Class E , Humans , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/chemistry , Scavenger Receptors, Class E/metabolism , HEK293 Cells , Lipoproteins, LDL/metabolism , Receptors, Scavenger/metabolism , Lectins/metabolism
6.
Cell Rep ; 42(10): 113184, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37776520

ABSTRACT

Kinases are important therapeutic targets, and their inhibitors are classified according to their mechanism of action, which range from blocking ATP binding to covalent inhibition. Here, a mechanism of inhibition is highlighted by capturing p21-activated kinase 5 (PAK5) in an intermediate state of activation using an Affimer reagent that binds in the P+1 pocket. PAK5 was identified from a non-hypothesis-driven high-content imaging RNAi screen in urothelial cancer cells. Silencing of PAK5 resulted in reduced cell number, G1/S arrest, and enlargement of cells, suggesting it to be important in urothelial cancer cell line survival and proliferation. Affimer reagents were isolated to identify mechanisms of inhibition. The Affimer PAK5-Af17 recapitulated the phenotype seen with siRNA. Co-crystallization revealed that PAK5-Af17 bound in the P+1 pocket of PAK5, locking the kinase into a partial activation state. This mechanism of inhibition indicates that another class of kinase inhibitors is possible.


Subject(s)
Neoplasms , p21-Activated Kinases , Humans , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism , Phosphorylation , Protein Binding
7.
Biosens Bioelectron ; 237: 115488, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37419072

ABSTRACT

Therapeutic monoclonal antibodies (TmAb) have emerged as effective treatments for a number of cancers and autoimmune diseases. However, large interpatient disparities in the pharmacokinetics of TmAb treatment requires close therapeutic drug monitoring (TDM) to optimise dosage for individual patients. Here we demonstrate an approach for achieving rapid, sensitive quantification of two monoclonal antibody therapies using a previously described enzyme switch sensor platform. The enzyme switch sensor consists of a ß-lactamase - ß-lactamase inhibitor protein (BLA-BLIP) complex with two anti-idiotype binding proteins (Affimer proteins) as recognition elements. The BLA-BLIP sensor was engineered to detect two TmAbs (trastuzumab and ipilimumab) by developing constructs incorporating novel synthetic binding reagents to each of these mAbs. Trastuzumab and ipilimumab were successfully monitored with sub nM sensitivity in up to 1% serum, thus covering the relevant therapeutic range. Despite the modular design, the BLA-BLIP sensor was unsuccessful in detecting two further TmAbs (rituximab and adalimumab), an explanation for which was explored. In conclusion, the BLA-BLIP sensors provide a rapid biosensor for TDM of trastuzumab and ipilimumab with the potential to improve therapy. The sensitivity of this platform alongside its rapid action would be suitable for bedside monitoring in a point-of-care (PoC) setting.


Subject(s)
Biosensing Techniques , Drug Monitoring , Humans , Ipilimumab , Antibodies, Monoclonal/therapeutic use , Trastuzumab/therapeutic use , Immunotherapy
8.
J Thromb Haemost ; 21(3): 667-681, 2023 03.
Article in English | MEDLINE | ID: mdl-36696196

ABSTRACT

BACKGROUND: The glycoprotein VI (GPVI) signaling pathway was previously reported to direct procoagulant platelet activity through collagen binding. However, the impact of GPVI-fibrin interaction on procoagulant platelet development and how it modulates the clot structure are unknown. OBJECTIVES: To determine the effect of GPVI-fibrin interaction on the platelet phenotype and its impact on the clot structure. METHODS: Procoagulant platelets in platelet-rich plasma clots were determined by scanning electron microscopy (wild-type and GPVI-deficient murine samples) and confocal microscopy. Procoagulant platelet number, clot density, clot porosity, and clot retraction were determined in platelet-rich plasma or whole blood clots of healthy volunteers in the presence of tyrosine kinase inhibitors (PRT-060318, ibrutinib, and dasatinib) and eptifibatide. RESULTS: GPVI-deficient clots showed a higher nonprocoagulant vs procoagulant platelet ratio than wild-type clots. The fiber density and the procoagulant platelet number decreased in the presence of Affimer proteins, inhibiting GPVI-fibrin(ogen) interaction and the tyrosine kinase inhibitors. The effect of GPVI signaling inhibitors on the procoagulant platelet number was exacerbated by eptifibatide. The tyrosine kinase inhibitors led to an increase in clot porosity; however, no differences were observed in the final clot weight, following clot retraction with the tyrosine kinase inhibitors, except for ibrutinib. In the presence of eptifibatide, clot retraction was impaired. CONCLUSION: Our findings showed that GPVI-fibrin interaction significantly contributes to the development of procoagulant platelets and that inhibition of GPVI signaling increases clot porosity. Clot contractibility was impaired by the integrin αIIbß3 and Btk pathway inhibition. Thus, inhibition of GPVI-fibrin interactions can alleviate structural characteristics that contribute to a prothrombotic clot phenotype, having potential important implications for novel antithrombotic interventions.


Subject(s)
Fibrin , Thrombosis , Animals , Mice , Blood Platelets/metabolism , Eptifibatide/pharmacology , Fibrin/chemistry , Platelet Membrane Glycoproteins/metabolism
9.
Biophys J ; 121(19): 3651-3662, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35778844

ABSTRACT

Mutations of the intracellular estrogen receptor alpha (ERα) is implicated in 70% of breast cancers. Therefore, it is of considerable interest to image various mutants (L536S, Y537S, D538G) in living cancer cell lines, particularly as a function of various anticancer drugs. We therefore developed a small (13 kDa) Affimer, which, after fluorescent labeling, is able to efficiently label ERα by traveling through temporary pores in the cell membrane, created by the toxin streptolysin O. The Affimer, selected by a phage display, predominantly labels the Y537S mutant and can tell the difference between L536S and D538G mutants. The vast majority of Affimer-ERαY537S is in the nucleus and is capable of an efficient, unrestricted navigation to its target DNA sequence, as visualized by single-molecule fluorescence. The Affimer can also differentiate the effect of selective estrogen receptor modulators. More generally, this is an example of a small binding reagent-an Affimer protein-that can be inserted into living cells with minimal perturbation and high efficiency, to image an endogenous protein.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Humans , MCF-7 Cells , Mutation , Receptors, Estrogen/genetics , Receptors, Estrogen/therapeutic use , Selective Estrogen Receptor Modulators/therapeutic use
10.
Biochim Biophys Acta Gen Subj ; 1866(5): 130115, 2022 05.
Article in English | MEDLINE | ID: mdl-35240235

ABSTRACT

BACKGROUND: Fibrinogen is an abundant plasma protein with an essential role in blood coagulation and haemostasis thus receiving significant research interest. However, protein purification is time consuming and commercial preparations often have protein contaminants. The aim of this study was to develop a new method to purify high quality and functional fibrinogen. METHODS: Fibrinogen-specific Affimer protein, isolated using phage display systems, was immobilised to SulfoLink resin column and employed for fibrinogen purification from plasma samples. Fibrinogen was eluted using a high pH solution. Commercial human fibrinogen was also further purified using the Affimer column. Fibrinogen purity was determined by SDS-PAGE and mass spectrometry, while functionality was assessed using turbidimetric analysis. RESULTS: Affimer-purified fibrinogen from human plasma showed purity at least comparable to commercially available preparations and was able to form physiological fibrin networks. Further purification of commercially available fibrinogen using the Affimercolumn eliminated multiple contaminant proteins, a significant number of which are key elements of the coagulation cascade, including plasminogen and factor XIII. CONCLUSIONS: The Affimercolumn represents a proof of concept novel, rapid method for isolating functional fibrinogen from plasma and for further purification of commercially available fibrinogen preparations. GENERAL SIGNIFICANCE: Our methodology provides an efficient way of purifying functional fibrinogen with superior purity without the need of expensive pieces of equipment or the use of harsh conditions.


Subject(s)
Fibrin , Fibrinogen , Chromatography, Affinity/methods , Fibrin/metabolism , Fibrinogen/metabolism , Hemostasis , Humans , Plasminogen
11.
Biofilm ; 4: 100074, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35340817

ABSTRACT

Staphylococcus aureus (S. aureus) is an important human pathogen and a common cause of bloodstream infection. The ability of S. aureus to form biofilms, particularly on medical devices, makes treatment difficult, as does its tendency to spread within the body and cause secondary foci of infection. Prolonged courses of intravenous antimicrobial treatment are usually required for serious S. aureus infections. This work investigates the in vitro attachment of microbubbles to S. aureus biofilms via a novel Affimer protein, AClfA1, which targets the clumping factor A (ClfA) virulence factor - a cell-wall anchored protein associated with surface attachment. Microbubbles (MBs) are micron-sized gas-filled bubbles encapsulated by a lipid, polymer, or protein monolayer or other surfactant-based material. Affimers are small (∼12 kDa) heat-stable binding proteins developed as replacements for antibodies. The binding kinetics of AClfA1 against S. aureus ClfA showed strong binding affinity (KD = 62 ± 3 nM). AClfA1 was then shown to bind S. aureus biofilms under flow conditions both as a free ligand and when bound to microparticles (polymer beads or microbubbles). Microbubbles functionalized with AClfA1 demonstrated an 8-fold increase in binding compared to microbubbles functionalized with an identical Affimer scaffold but lacking the recognition groups. Bound MBs were able to withstand flow rates of 250 µL/min. Finally, ultrasound was applied to burst the biofilm bound MBs to determine whether this would lead to biofilm biomass loss or cell death. Application of a 2.25 MHz ultrasound profile (with a peak negative pressure of 0.8 MPa and consisting of a 22-cycle sine wave, at a pulse repetition rate of 10 kHz) for 2 s to a biofilm decorated with targeted MBs, led to a 25% increase in biomass loss and a concomitant 8% increase in dead cell count. The results of this work show that Affimers can be developed to target S. aureus biofilms and that such Affimers can be attached to contrast agents such as microbubbles or polymer beads and offer potential, with some optimization, for drug-free biofilm treatment.

12.
Bioconjug Chem ; 32(10): 2205-2212, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34565149

ABSTRACT

A significant unmet need exists for the delivery of biologic drugs such as polypeptides or nucleic acids to the central nervous system for the treatment and understanding of neurodegenerative diseases. Naturally occurring bacterial toxins have been considered as tools to meet this need. However, due to the complexity of tethering macromolecular drugs to toxins and the inherent dangers of working with large quantities of recombinant toxins, no such route has been successfully exploited. Developing a method where a bacterial toxin's nontoxic targeting subunit can be assembled with a drug immediately prior to in vivo administration has the potential to circumvent some of these issues. Using a phage-display screen, we identified two antibody mimetics, anticholera toxin Affimer (ACTA)-A2 and ACTA-C6 that noncovalently associate with the nonbinding face of the cholera toxin B-subunit. In a first step toward the development of a nonviral motor neuron drug-delivery vehicle, we show that Affimers can be selectively delivered to motor neurons in vivo.


Subject(s)
Cholera Toxin , Bacterial Toxins , Immunoglobulins , Motor Neurons , Peptides
13.
Nat Commun ; 12(1): 4045, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193876

ABSTRACT

RAS mutations are the most common oncogenic drivers across human cancers, but there remains a paucity of clinically-validated pharmacological inhibitors of RAS, as druggable pockets have proven difficult to identify. Here, we identify two RAS-binding Affimer proteins, K3 and K6, that inhibit nucleotide exchange and downstream signaling pathways with distinct isoform and mutant profiles. Affimer K6 binds in the SI/SII pocket, whilst Affimer K3 is a non-covalent inhibitor of the SII region that reveals a conformer of wild-type RAS with a large, druggable SII/α3 pocket. Competitive NanoBRET between the RAS-binding Affimers and known RAS binding small-molecules demonstrates the potential to use Affimers as tools to identify pharmacophores. This work highlights the potential of using biologics with small interface surfaces to select unseen, druggable conformations in conjunction with pharmacophore identification for hard-to-drug proteins.


Subject(s)
Biological Products/pharmacology , Cell Surface Display Techniques/methods , Drug Discovery/methods , Neoplasms/drug therapy , ras Proteins/antagonists & inhibitors , Allosteric Site , Biological Products/chemistry , Humans , Neoplasms/chemistry , Neoplasms/enzymology , Signal Transduction , ras Proteins/metabolism
14.
Nano Lett ; 21(3): 1213-1220, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33253583

ABSTRACT

Inferring the organization of fluorescently labeled nanosized structures from single molecule localization microscopy (SMLM) data, typically obscured by stochastic noise and background, remains challenging. To overcome this, we developed a method to extract high-resolution ordered features from SMLM data that requires only a low fraction of targets to be localized with high precision. First, experimentally measured localizations are analyzed to produce relative position distributions (RPDs). Next, model RPDs are constructed using hypotheses of how the molecule is organized. Finally, a statistical comparison is used to select the most likely model. This approach allows pattern recognition at sub-1% detection efficiencies for target molecules, in large and heterogeneous samples and in 2D and 3D data sets. As a proof-of-concept, we infer ultrastructure of Nup107 within the nuclear pore, DNA origami structures, and α-actinin-2 within the cardiomyocyte Z-disc and assess the quality of images of centrioles to improve the averaged single-particle reconstruction.


Subject(s)
DNA , Single Molecule Imaging
15.
Methods Mol Biol ; 2247: 105-121, 2021.
Article in English | MEDLINE | ID: mdl-33301114

ABSTRACT

Artificial binding proteins have been validated as alternatives to antibodies in their use as research reagents in molecular and cellular biology. For example, they have been used as inhibitors of protein-protein interactions to modulate activity, to facilitate crystallization, and as probes for cellular imaging.Phage display is a widely used approach for isolating target-specific binding reagents, and it has even been used to isolate isoform-specific binding proteins and binders that can distinguish between highly homologous protein domains.Here, we describe methods that have been employed in isolating highly specific artificial binding proteins against a wide range of target proteins.


Subject(s)
Carrier Proteins/isolation & purification , Cell Biology , Indicators and Reagents , Molecular Biology , Antibodies/metabolism , Carrier Proteins/chemistry , Cell Surface Display Techniques , Cytological Techniques , Enzyme-Linked Immunosorbent Assay , Humans , Molecular Biology/methods , Peptide Library , Protein Binding , Structure-Activity Relationship
16.
Haematologica ; 106(6): 1616-1623, 2021 06 01.
Article in English | MEDLINE | ID: mdl-32354869

ABSTRACT

Complement C3 binds fibrinogen and compromises fibrin clot lysis thereby enhancing thrombosis risk. We investigated the role of fibrinogen-C3 interaction as a novel therapeutic target to reduce thrombosis risk by analysing: i) consistency in the fibrinolytic properties of C3, ii) binding sites between fibrinogen and C3 and iii) modulation of fibrin clot lysis by manipulating fibrinogen-C3 interactions. Purified fibrinogen and C3 from the same individuals (n=24) were used to assess inter-individual variability in the anti-fibrinolytic effects of C3. Microarray screening and molecular modelling evaluated C3 and fibrinogen interaction sites. Novel synthetic conformational proteins, termed Affimers, were used to modulate C3-fibrinogen interaction and fibrinolysis. C3 purified from patients with type 1 diabetes showed enhanced prolongation of fibrinolysis compared with healthy control protein [195±105 and 522±166 seconds, respectively (p=0.04)], with consistent effects but a wider range (5-51% and 5-18% lysis prolongation, respectively). Peptide microarray screening identified 2 potential C3-fibrinogen interactions sites within fibrinogen ß chain (residues 424-433, 435-445). One fibrinogen-binding Affimer was isolated that displayed sequence identity with C3 in an exposed area of the protein. This Affimer abolished C3-induced prolongation of fibrinolysis (728±25.1 seconds to 632±23.7 seconds, p=0.005) and showed binding to fibrinogen in the same region that is involved in C3-fibrinogen interactions. Moreover, it shortened plasma clot lysis of patients with diabetes, cardiovascular disease or controls by 7-11%. C3 binds fibrinogen ß-chain and disruption of fibrinogen-C3 interaction using Affimer proteins enhances fibrinolysis, which represents a potential novel target tool to reduce thrombosis in high risk individuals.


Subject(s)
Fibrinogen , Thrombosis , Complement C3 , Fibrin , Fibrinolysis , Humans , Thrombosis/drug therapy , Thrombosis/etiology , Thrombosis/prevention & control
17.
Chembiochem ; 22(1): 232-240, 2021 01 05.
Article in English | MEDLINE | ID: mdl-32961017

ABSTRACT

The BCL-2 family is a challenging group of proteins to target selectively due to sequence and structural homologies across the family. Selective ligands for the BCL-2 family regulators of apoptosis are useful as probes to understand cell biology and apoptotic signalling pathways, and as starting points for inhibitor design. We have used phage display to isolate Affimer reagents (non-antibody-binding proteins based on a conserved scaffold) to identify ligands for MCL-1, BCL-xL , BCL-2, BAK and BAX, then used multiple biophysical characterisation methods to probe the interactions. We established that purified Affimers elicit selective recognition of their target BCL-2 protein. For anti-apoptotic targets BCL-xL and MCL-1, competitive inhibition of their canonical protein-protein interactions is demonstrated. Co-crystal structures reveal an unprecedented mode of molecular recognition; where a BH3 helix is normally bound, flexible loops from the Affimer dock into the BH3 binding cleft. Moreover, the Affimers induce a change in the target proteins towards a desirable drug-bound-like conformation. These proof-of-concept studies indicate that Affimers could be used as alternative templates to inspire the design of selective BCL-2 family modulators and more generally other protein-protein interaction inhibitors.


Subject(s)
Myeloid Cell Leukemia Sequence 1 Protein/analysis , bcl-X Protein/analysis , Apoptosis , Humans , Ligands , Models, Molecular , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Binding , Protein Conformation , bcl-X Protein/metabolism
18.
PLoS Negl Trop Dis ; 14(6): e0008364, 2020 06.
Article in English | MEDLINE | ID: mdl-32492018

ABSTRACT

Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) is one of the most widespread medically important arboviruses, causing human infections that result in mortality rates of up to 60%. We describe the selection of a high-affinity small protein (Affimer-NP) that binds specifically to the nucleoprotein (NP) of CCHFV. We demonstrate the interference of Affimer-NP in the RNA-binding function of CCHFV NP using fluorescence anisotropy, and its inhibitory effects on CCHFV gene expression in mammalian cells using a mini-genome system. Solution of the crystallographic structure of the complex formed by these two molecules at 2.84 Å resolution revealed the structural basis for this interference, with the Affimer-NP binding site positioned at the critical NP oligomerization interface. Finally, we validate the in vitro application of Affimer-NP for the development of enzyme-linked immunosorbent and lateral flow assays, presenting the first published point-of-care format test able to detect recombinant CCHFV NP in spiked human and animal sera.


Subject(s)
Colorimetry/methods , Diagnostic Tests, Routine/methods , Hemorrhagic Fever Virus, Crimean-Congo/physiology , Hemorrhagic Fever, Crimean/diagnosis , Hemorrhagic Fever, Crimean/virology , Virus Replication , Animals , Antibodies, Viral/blood , Antigens, Viral/genetics , Enzyme-Linked Immunosorbent Assay , Gene Expression , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Humans , Immunoglobulin G/blood , Models, Molecular , Nucleoproteins/chemistry , Nucleoproteins/genetics , Protein Conformation
19.
Nanoscale ; 12(16): 8647-8655, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32147673

ABSTRACT

Full water-dispersion of commercial hydrophobic CdSe/CdS core/shell quantum rods (QRs) was achieved by cap-exchange using a dihydrolipoic acid zwitterion ligand at a low ligand:QR molar ratio (LQMR) of 1000. However, this process almost completely quenched the QR fluorescence, greatly limiting its potential in downstream fluorescence based applications. Fortunately, we found that the QR fluorescence could be recovered by exposure to near ultra-violet to blue light radiation (e.g. 300-450 nm). These "reborn" QRs were found to be compact, bright, and stable, and were resistant to non-specific adsorption, which make them powerful fluorescent probes in broad biomedical applications. We demonstrated their potential in two model applications: first, the QRs were conjugated with His8-tagged small antibody mimetic proteins (also known as Affimers) for the sensitive detection of target proteins via a Förster resonance energy transfer (FRET) readout strategy and second, the QR surface was functionalized with biotins for targeted imaging of cancer cells.


Subject(s)
Biosensing Techniques/methods , Cadmium Compounds/chemistry , Microscopy, Fluorescence/methods , Quantum Dots/chemistry , Selenium Compounds/chemistry , Sulfides/chemistry , Biotin/chemistry , Cell Line, Tumor , Fluorescence Resonance Energy Transfer , Humans , Ligands , Light , Photons , Small Ubiquitin-Related Modifier Proteins/chemistry , Thioctic Acid/analogs & derivatives , Thioctic Acid/chemistry , Ultraviolet Rays
20.
Biotechniques ; 67(6): 261-269, 2019 12.
Article in English | MEDLINE | ID: mdl-31823668

ABSTRACT

Therapeutic antibodies are the fastest growing class of drugs in the treatment of cancer, and autoimmune and inflammatory diseases that require the concomitant development of assays to monitor therapeutic antibody levels. Here, we demonstrate that the use of Affimer nonantibody binding proteins provides an advantage over current antibody-based detection systems. For four therapeutic antibodies, we used phage display to isolate highly specific anti-idiotypic Affimer reagents, which selectively bind to the therapeutic antibody idiotype. For each antibody target the calibration curves met US Food and Drug Administration criteria and the dynamic range compared favorably with commercially available reagents. Affimer proteins therefore represent promising anti-idiotypic reagents that are simple to select and manufacture, and that offer the sensitivity, specificity and consistency required for pharmacokinetic assays.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Antibody Affinity/drug effects , Biological Therapy/methods , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL