Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Dalton Trans ; 53(25): 10720-10729, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38869457

ABSTRACT

We investigated the possibility of synthesizing Co nanoparticles in CoZrnH/AlOx(OH)y/Al ceramic-metal catalysts and controlling the catalytic properties of these nanoparticles in syngas conversion by changing the Co/Zr ratio. The CoZr nanocomposites were obtained from metal powders by mechanochemical activation in a high-energy mill under an argon atmosphere, followed by treatment with hydrogen at high pressure and room temperature. Ceramic-metal catalysts were prepared by mixing the corresponding CoZrnH powder nanocomposite (30 wt%) with powdered aluminum (70 wt%), hydrothermal treatment of the mixture and subsequent calcination. The materials were characterized with a set of physicochemical methods: powder X-ray diffraction, scanning electron microscopy, 59Co internal field nuclear magnetic resonance spectroscopy, and temperature programmed reduction. Catalytic studies were performed in a laboratory fixed-bed flow reactor at 2 MPA and 210-270 °C. It is shown that the activity in syngas conversion to C5+ hydrocarbons and selectivity to methane and C2-C4 hydrocarbons depend on the Co/Zr ratio. Thus, with an increase in the zirconium content in the samples, the interaction of metal cobalt with metal zirconium improves in the process of mechanical activation and subsequent treatment with hydrogen. The destruction of the agglomerates of crystallites of metallic cobalt in the form of ß-Co (Cofcc) occurs as well as their transformation to α-Co (Cohcp) particles active in the syngas conversion to C5+ hydrocarbons. This can explain the highest specific yield of C5+ hydrocarbons on a cermet with the lowest Co/Zr ratio.

2.
Materials (Basel) ; 16(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36770080

ABSTRACT

The use of metal powders produced by mechanical treatment in various fields, such as catalysis or gas absorption, is often limited by the low specific surface area of the resulting particles. One of the possible solutions for increasing the particle fineness is hydrogen treatment; however, its effect on the structure of mechanically treated powders remains unexplored. In this work, for the first time, a metal-oxide nanocomposite powder was produced by mechanical alloying (MA) in a high-energy planetary ball mill from commercial powders of Zr and Co in the atomic ratio Co:Zr = 53:47 in an inert atmosphere, followed by high-pressure hydrogenation at room temperature. The initial powders and products of alloying and hydrogenation were studied by XRD, 59Co Internal Field NMR, SEM, and HRTEM microscopy with EDX mapping, as well as Raman spectroscopy. MA resulted in significant amorphization of the powders, as well as extensive oxidation of zirconium by water according to the so-called "Fukushima effect". Moreover, an increase in hcp Co sites was observed. 59Co IF NMR spectra revealed the formation of magnetically single-domain cobalt particles after hydrogenation. The crystallite sizes remained unchanged, which was not observed earlier. The pulverization of Co and an increase in hcp Co sites made this nanocomposite suitable for the synthesis of promising Fischer-Tropsch catalysts.

3.
Materials (Basel) ; 15(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35329537

ABSTRACT

In the present work, complex powder alloys containing spinel as a minor phase were produced by mechanical alloying in a high-energy planetary ball mill from a 33Al-45Cu-22Fe (at.%) powder blend. These alloys show characteristics suitable for the synthesis of promising catalysts. The alloying was conducted in two stages: at the first stage, a Cu+Fe powder mixture was ball-milled for 90 min; at the second stage, Al was added, and the milling process was continued for another 24 min. The main products of mechanical alloying formed at each stage were studied using X-ray diffraction phase analysis, Mössbauer spectroscopy, transmission electron microscopy, and energy-dispersive spectroscopy. At the end of the first stage, crystalline iron was not found. The main product of the first stage was a metastable Cu(Fe) solid solution with a face-centered cubic structure. At the second stage, the Cu(Fe) solid solution transformed to Cu(Al), several Fe-containing amorphous phases, and a spinel phase. The products of the two-stage process were different from those of the single-stage mechanical alloying of the ternary elemental powder mixture; the formation of undesirable intermediate phases was avoided, which ensured excellent composition uniformity. A sequence of solid-state reactions occurring during mechanical alloying was proposed. Mesopores and a spinel phase were the features of the two-stage milled material (both are desirable for the target catalyst).

4.
ACS Omega ; 5(32): 19928-19937, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32832747

ABSTRACT

Enhanced activity in low-temperature water-gas shift (LT-WGS) reaction of some ceramometal catalysts compared to conventional Cu-Zn-Al oxide catalyst was demonstrated. Porous ceramometals were synthesized from powdered CuAl alloys prepared by mechanical alloying with the addition of either CuAlexp powders produced by current spark explosion of Cu+Al wires or CuZnAl oxide obtained by coprecipitation. Their structural, microstructural, and textural characteristics were examined by means of X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectrometry, NMR, and adsorption methods, and catalytic properties were studied in the LT-WGS reaction. CuAlO/CuAl ceramometals were found to have mostly the egg-shell microstructure with the metallic cores (Al x Cu1-x , Al2Cu, and Al4Cu9) and the oxide shell containing copper oxides and/or mixed oxides of copper and aluminum and, at same time, CuAlO/CuAl ceramometal with incorporated additives was found to create a more complicated microstructure. A large amount of X-ray amorphous oxides of copper and aluminum is typical for all composites. CuAl ceramometal was shown to be more active than the CuZnAl oxide catalyst in spite of a much lower specific surface area. The CuAl+CuZnAl catalyst consisting of prismatic granules showed a higher activity in comparison with CuZnAl oxide consisting of cylindrical granules. The activity of the composite granulated catalyst referred to its unit weight was more than 6-fold higher as compared to the oxide catalyst, while the activity per the surface area was found to be more than an order of magnitude higher due to much higher specific activity of small fraction and additively much lower diffusion limitation of granules.

SELECTION OF CITATIONS
SEARCH DETAIL