Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
1.
J Autoimmun ; 148: 103297, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098251

ABSTRACT

OBJECTIVE: Systemic sclerosis-interstitial lung disease (SSc-ILD) is the leading cause of death in SSc, affecting around 50 % of the patients. Lung tissue of patients with early-stage SSc-ILD is characterized by a predominant inflammatory response with inconspicuous fibrosis, which may progress to honeycombing fibrosis. Hence, a better understanding of the molecular mechanisms underpinning SSc-ILD pathogenesis is needed to improve treatment options and progression prediction. This transcriptomic study aims to reveal the differential gene expression between control (ctrl) lung tissue and inflammatory, prefibrotic and fibrotic lung tissue to capture progression of early to late phase SSc-ILD. METHODS: Twelve explanted lungs from patients with SSc-ILD were used to analyze gene expression from formalin-fixed paraffin-embedded lung tissues with varying stages of ILD (n = 18) and control lung tissue (n = 6). The SSc-ILD tissues were stratified into three ROIs: inflammatory, prefibrotic, and fibrotic using histological assessments to define a longitudinal simulation of early to late phases of SSc-ILD. The nanoString (nS) nCounter Human Fibrosis Panel was used to profile the transcriptome in the regions of interest. Validation of potential targetswas performed with immunohistochemistry in the same tissues that were used for transcriptome analysis. RESULTS: To validate our simulation model, we performed subgroup analysis that showed an incremental increase in pathway scores related to the severity of fibrosis. Ctrl vs SSc-ILD comparison demonstrated 24 differentially expressed genes, two of which had the most pronounced p-values. Cyclin-dependent kinase inhibitor (cdkn2c) was overexpressed (P = 0.00052) in SSc-ILD compared to ctrl, while expression of Pellino E3 ubiquitin-protein ligase 1 (peli1) showed lower expression (P = 0.0012). Additionally, in all four groups, cdkn2c and peli1 gene expression showed an incremental increase and decrease, respectively. Immunohistochemistry of cdkn2c showed consistent results with the nS analysis. CONCLUSION: More cdkn2c and less peli1 expression were associated with more advanced stages of SSc-ILD on histologic assessment. We report the potential of the cell cycle inhibitor and senescence marker, cdkn2c (p18) to be associated with fibrosis progression.

2.
medRxiv ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39040187

ABSTRACT

Most genetic variants identified through genome-wide association studies (GWAS) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis. We first identified five genome-wide significant variants associated with both diseases. Four of the variants did not demonstrate clear colocalization between GWAS and healthy lung eQTL signals. Instead, two of the four variants colocalized only in cell-type and disease-specific eQTL datasets. These analyses pointed to higher ATP11A expression from the C allele of rs12585036, in monocytes and in lung tissue from primarily smokers, which increased risk of IPF and decreased risk of critically ill COVID-19. We also found lower DPP9 expression (and higher methylation at a specific CpG) from the G allele of rs12610495, acting in fibroblasts and in IPF lungs, and increased risk of IPF and critically ill COVID-19. We further found differential expression of the identified causal genes in diseased lungs when compared to non-diseased lungs, specifically in epithelial and immune cell types. These findings highlight the power of integrating GWAS, context-specific eQTLs, and transcriptomics of diseased tissue to harness human genetic variation to identify causal genes and where they function during multiple diseases.

3.
Cells ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891077

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease for which there is no cure. Accumulating research results suggest a role for extracellular vesicles (EVs) in the pathogenesis of COPD. This study aimed to uncover the involvement of EVs and their molecular cargo in the progression of COPD by identification of EV-associated protein and microRNA (miRNA) profiles. We isolated EVs from the bronchial alveolar lavage fluid (BALF) of 18 patients with COPD and 11 healthy controls using size-exclusion chromatography. EV isolates were characterized using nanoparticle tracking analysis and protein content. Proteomic analysis revealed a higher abundance of 284 proteins (log2FC > 1) and a lower abundance of 3 proteins (log2FC < -1) in EVs derived from patients with COPD. Ingenuity pathway analysis showed that proteins enriched in COPD-associated EVs trigger inflammatory responses, including neutrophil degranulation. Variances in surface receptors and ligands associated with COPD EVs suggest a preferential interaction with alveolar cells. Small RNAseq analysis identified a higher abundance of ten miRNAs and a lower abundance of one miRNA in EVs from COPD versus controls (Basemean > 100, FDR < 0.05). Our data indicate that the molecular composition of EVs in the BALF of patients with COPD is altered compared to healthy control EVs. Several components in COPD EVs were identified that may perpetuate inflammation and alveolar tissue destruction.


Subject(s)
Bronchoalveolar Lavage Fluid , Extracellular Vesicles , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Male , Female , Middle Aged , Aged , Case-Control Studies , Proteomics/methods
4.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L304-L318, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38915286

ABSTRACT

Extracellular matrix (ECM) remodeling has been implicated in the irreversible obstruction of airways and destruction of alveolar tissue in chronic obstructive pulmonary disease (COPD). Studies investigating differences in the lung ECM in COPD have mainly focused on some collagens and elastin, leaving an array of ECM components unexplored. We investigated the differences in the ECM landscape comparing severe-early onset (SEO)-COPD and moderate COPD to control lung tissue for collagen type I α chain 1 (COL1A1), collagen type VI α chain 1 (COL6A1); collagen type VI α chain 2 (COL6A2), collagen type XIV α chain 1 (COL14A1), fibulin 2 and 5 (FBLN2 and FBLN5), latent transforming growth factor ß binding protein 4 (LTBP4), lumican (LUM), versican (VCAN), decorin (DCN), and elastin (ELN) using image analysis and statistical modeling. Percentage area and/or mean intensity of expression of LUM in the parenchyma, and COL1A1, FBLN2, LTBP4, DCN, and VCAN in the airway walls, was proportionally lower in COPD compared to controls. Lowered levels of most ECM proteins were associated with decreasing forced expiratory volume in 1 s (FEV1) measurements, indicating a relationship with disease severity. Furthermore, we identified six unique ECM signatures where LUM and COL6A1 in parenchyma and COL1A1, FBLN5, DCN, and VCAN in airway walls appear essential in reflecting the presence and severity of COPD. These signatures emphasize the need to examine groups of proteins to represent an overall difference in the ECM landscape in COPD that are more likely to be related to functional effects than individual proteins. Our study revealed differences in the lung ECM landscape between control and COPD and between SEO and moderate COPD signifying distinct pathological processes in the different subgroups.NEW & NOTEWORTHY Our study identified chronic obstructive pulmonary disease (COPD)-associated differences in the lung extracellular matrix (ECM) composition. We highlight the compartmental differences in the ECM landscape in different subtypes of COPD. The most prominent differences were observed for severe-early onset COPD. Moreover, we identified unique ECM signatures that describe airway walls and parenchyma providing insight into the intertwined nature and complexity of ECM changes in COPD that together drive ECM remodeling and may contribute to disease pathogenesis.


Subject(s)
Decorin , Elastin , Extracellular Matrix Proteins , Extracellular Matrix , Lung , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Humans , Male , Middle Aged , Lung/metabolism , Lung/pathology , Female , Extracellular Matrix Proteins/metabolism , Elastin/metabolism , Decorin/metabolism , Aged , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Versicans/metabolism , Latent TGF-beta Binding Proteins/metabolism , Latent TGF-beta Binding Proteins/genetics , Lumican/metabolism , Collagen Type I/metabolism , Calcium-Binding Proteins/metabolism , Collagen Type I, alpha 1 Chain , Severity of Illness Index , Collagen Type VI/metabolism
6.
Lung ; 202(3): 331-342, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642135

ABSTRACT

BACKGROUND: Lung fibrosis is a chronic lung disease with a high mortality rate with only two approved drugs (pirfenidone and nintedanib) to attenuate its progression. To date, there are no reliable biomarkers to assess fibrosis development and/or treatment effects for these two drugs. Osteoprotegerin (OPG) is used as a serum marker to diagnose liver fibrosis and we have previously shown it associates with lung fibrosis as well. METHODS: Here we used murine and human precision-cut lung slices to investigate the regulation of OPG in lung tissue to elucidate whether it tracks with (early) fibrosis development and responds to antifibrotic treatment to assess its potential use as a biomarker. RESULTS: OPG mRNA expression in murine lung slices was higher after treatment with profibrotic cytokines TGFß1 or IL13, and closely correlated with Fn and PAI1 mRNA expression. More OPG protein was released from fibrotic human lung slices than from the control human slices and from TGFß1 and IL13-stimulated murine lung slices compared to control murine slices. This OPG release was inhibited when murine slices were treated with pirfenidone or nintedanib. OPG release from human fibrotic lung slices was inhibited by pirfenidone treatment. CONCLUSION: OPG can already be detected during the early stages of fibrosis development and responds, both in early- and late-stage fibrosis, to treatment with antifibrotic drugs currently on the market for lung fibrosis. Therefore, OPG should be further investigated as a potential biomarker for lung fibrosis and a potential surrogate marker for treatment effect.


Subject(s)
Antifibrotic Agents , Biomarkers , Indoles , Lung , Osteoprotegerin , Pulmonary Fibrosis , Pyridones , Transforming Growth Factor beta1 , Animals , Osteoprotegerin/metabolism , Osteoprotegerin/genetics , Humans , Indoles/pharmacology , Biomarkers/blood , Biomarkers/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Lung/pathology , Lung/drug effects , Lung/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pyridones/pharmacology , Pyridones/therapeutic use , Mice , Antifibrotic Agents/pharmacology , Antifibrotic Agents/therapeutic use , Mice, Inbred C57BL , Male , RNA, Messenger/metabolism , RNA, Messenger/genetics
7.
Cancer Immunol Res ; 12(6): 759-778, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38573707

ABSTRACT

Identification of immunogenic cancer neoantigens as targets for therapy is challenging. Here, we integrate the whole-genome and long-read transcript sequencing of cancers to identify the collection of neo-open reading frame peptides (NOP) expressed in tumors. We termed this collection of NOPs the tumor framome. NOPs represent tumor-specific peptides that are different from wild-type proteins and may be strongly immunogenic. We describe a class of hidden NOPs that derive from structural genomic variants involving an upstream protein coding gene driving expression and translation of noncoding regions of the genome downstream of a rearrangement breakpoint, i.e., where no gene annotation or evidence for transcription exists. The entire collection of NOPs represents a vast number of possible neoantigens particularly in tumors with many structural genomic variants and a low number of missense mutations. We show that NOPs are immunogenic and epitopes derived from NOPs can bind to MHC class I molecules. Finally, we provide evidence for the presence of memory T cells specific for hidden NOPs in peripheral blood from a patient with lung cancer. This work highlights NOPs as a major source of possible neoantigens for personalized cancer immunotherapy and provides a rationale for analyzing the complete cancer genome and transcriptome as a basis for the detection of NOPs.


Subject(s)
Antigens, Neoplasm , Immunotherapy , Neoplasms , Open Reading Frames , Humans , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , Peptides/immunology
8.
Lancet Reg Health Eur ; 38: 100838, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476742

ABSTRACT

In the past two decades, the treatment of metastatic non-small cell lung cancer (NSCLC), has undergone significant changes due to the introduction of targeted therapies and immunotherapy. These advancements have led to the need for predictive molecular tests to identify patients eligible for targeted therapy. This review provides an overview of the development and current application of targeted therapies and predictive biomarker testing in European patients with advanced stage NSCLC. Using data from eleven European countries, we conclude that recommendations for predictive testing are incorporated in national guidelines across Europe, although there are differences in their comprehensiveness. Moreover, the availability of recently EMA-approved targeted therapies varies between European countries. Unfortunately, routine assessment of national/regional molecular testing rates is limited. As a result, it remains uncertain which proportion of patients with metastatic NSCLC in Europe receive adequate predictive biomarker testing. Lastly, Molecular Tumor Boards (MTBs) for discussion of molecular test results are widely implemented, but national guidelines for their composition and functioning are lacking. The establishment of MTB guidelines can provide a framework for interpreting rare or complex mutations, facilitating appropriate treatment decision-making, and ensuring quality control.

9.
Lancet Reg Health Eur ; 38: 100839, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476751

ABSTRACT

For patients with advanced stage non-small cell lung cancer (NSCLC), treatment strategies have changed significantly due to the introduction of targeted therapies and immunotherapy. In the last few years, we have seen an explosive growth of newly introduced targeted therapies in oncology and this development is expected to continue in the future. Besides primary targetable aberrations, emerging diagnostic biomarkers also include relevant co-occurring mutations and resistance mechanisms involved in disease progression, that have impact on optimal treatment management. To accommodate testing of pending biomarkers, it is necessary to establish routine large-panel next-generation sequencing (NGS) for all patients with advanced stage NSCLC. For cost-effectiveness and accessibility, it is recommended to implement predictive molecular testing using large-panel NGS in a dedicated, centralized expert laboratory within a regional oncology network. The central molecular testing center should host a regional Molecular Tumor Board and function as a hub for interpretation of rare and complex testing results and clinical decision-making.

11.
Acta Biomater ; 177: 118-131, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38350556

ABSTRACT

Idiopathic pulmonary fibrosis (IPF), for which effective treatments are limited, results in excessive and disorganized deposition of aberrant extracellular matrix (ECM). An altered ECM microenvironment is postulated to contribute to disease progression through inducing profibrotic behavior of lung fibroblasts, the main producers and regulators of ECM. Here, we examined this hypothesis in a 3D in vitro model system by growing primary human lung fibroblasts in ECM-derived hydrogels from non-fibrotic (control) or IPF lung tissue. Using this model, we compared how control and IPF lung-derived fibroblasts responded in control and fibrotic microenvironments in a combinatorial manner. Culture of fibroblasts in fibrotic hydrogels did not alter in the overall amount of collagen or glycosaminoglycans but did cause a drastic change in fiber organization compared to culture in control hydrogels. High-density collagen percentage was increased by control fibroblasts in IPF hydrogels at day 7, but decreased at day 14. In contrast, IPF fibroblasts only decreased the high-density collagen percentage at day 14, which was accompanied by enhanced fiber alignment in IPF hydrogels. Similarly, stiffness of fibrotic hydrogels was increased only by control fibroblasts by day 14 while those of control hydrogels were not altered by fibroblasts. These data highlight how the ECM-remodeling responses of fibroblasts are influenced by the origin of both the cells and the ECM. Moreover, by showing how the 3D microenvironment plays a crucial role in directing cells, our study paves the way in guiding future investigations examining fibrotic processes with respect to ECM remodeling responses of fibroblasts. STATEMENT OF SIGNIFICANCE: In this study, we investigated the influence of the altered extracellular matrix (ECM) in Idiopathic Pulmonary Fibrosis (IPF), using a 3D in vitro model system composed of ECM-derived hydrogels from both IPF and control lungs, seeded with human IPF and control lung fibroblasts. While our results indicated that fibrotic microenvironment did not change the overall collagen or glycosaminoglycan content, it resulted in a dramatically alteration of fiber organization and mechanical properties. Control fibroblasts responded differently from IPF fibroblasts, highlighting the unique instructive role of the fibrotic ECM and the interplay with fibroblast origin. These results underscore the importance of 3D microenvironments in guiding pro-fibrotic responses, offering potential insights for future IPF therapies as well as other fibrotic diseases and cancer.


Subject(s)
Extracellular Matrix , Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Fibrosis , Collagen , Fibroblasts/pathology , Hydrogels/pharmacology
12.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397090

ABSTRACT

Volatile anesthetics have been shown in different studies to reduce ischemia reperfusion injury (IRI). Ex vivo lung perfusion (EVLP) facilitates graft evaluation, extends preservation time and potentially enables injury repair and improvement of lung quality. We hypothesized that ventilating lungs with sevoflurane during EVLP would reduce lung injury and improve lung function. We performed a pilot study to test this hypothesis in a slaughterhouse sheep DCD model. Lungs were harvested, flushed and stored on ice for 3 h, after which EVLP was performed for 4 h. Lungs were ventilated with either an FiO2 of 0.4 (EVLP, n = 5) or FiO2 of 0.4 plus sevoflurane at a 2% end-tidal concentration (Cet) (S-EVLP, n = 5). Perfusate, tissue samples and functional measurements were collected and analyzed. A steady state of the target Cet sevoflurane was reached with measurable concentrations in perfusate. Lungs in the S-EVLP group showed significantly better dynamic lung compliance than those in the EVLP group (p = 0.003). Oxygenation capacity was not different in treated lungs for delta partial oxygen pressure (PO2; +3.8 (-4.9/11.1) vs. -11.7 (-12.0/-3.2) kPa, p = 0.151), but there was a trend of a better PO2/FiO2 ratio (p = 0.054). Perfusate ASAT levels in S-EVLP were significantly reduced compared to the control group (198.1 ± 93.66 vs. 223.9 ± 105.7 IU/L, p = 0.02). We conclude that ventilating lungs with sevoflurane during EVLP is feasible and could be useful to improve graft function.


Subject(s)
Lung Transplantation , Animals , Sheep , Sevoflurane/pharmacology , Feasibility Studies , Pilot Projects , Organ Preservation , Lung , Perfusion
13.
Am J Respir Cell Mol Biol ; 70(5): 414-423, 2024 May.
Article in English | MEDLINE | ID: mdl-38315810

ABSTRACT

The role of alternative splicing in chronic obstructive pulmonary disease (COPD) is still largely unknown. We aimed to investigate the differences in alternatively splicing events between patients with mild-to-moderate and severe COPD compared with non-COPD control subjects and to identify splicing factors associated with aberrant alternative splicing in COPD. For this purpose, we performed genome-wide RNA-sequencing analysis of bronchial brushings from 23 patients with mild-to-moderate COPD, 121 with severe COPD, and 23 non-COPD control subjects. We found a significant difference in the frequency of alternative splicing events in patients with mild-to-moderate and severe COPD compared with non-COPD control subjects. There were from two to eight times (depending on event type) more differential alternative splicing events in the severe than in the mild-to-moderate stage. The severe COPD samples showed less intron retention and more exon skipping. It is interesting that the transcript levels of the top 10 differentially expressed splicing factors were significantly correlated with the percentage of many alternatively spliced transcripts in severe COPD. The aberrant alternative splicing in severe COPD was predicted to increase the overall protein-coding capacity of gene products. In conclusion, we observed large and significant differences in alternative splicing between bronchial samples of patients with COPD and control subjects, with more events observed in severe than in mild-to-moderate COPD. The changes in the expression of several splicing factors correlated with prevalence of alternative splicing in severe COPD. Alternative splicing can indirectly impact gene expression by changing the relative abundance of protein-coding isoforms potentially influencing pathophysiological changes. The results provide a better understanding of COPD-related alternative splicing changes.


Subject(s)
Alternative Splicing , Pulmonary Disease, Chronic Obstructive , Transcriptome , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Alternative Splicing/genetics , Male , Female , Transcriptome/genetics , Aged , Middle Aged , Severity of Illness Index , Case-Control Studies , Exons/genetics
15.
Am J Physiol Cell Physiol ; 326(1): C177-C193, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37955339

ABSTRACT

Fibroblasts are the main producers of extracellular matrix (ECM) responsible for ECM maintenance and repair, a process often disrupted in chronic lung diseases. The accompanying mechanical changes adversely affect resident cells and overall lung function. Numerous models have been used to elucidate fibroblast behavior that are now evolving toward complex three-dimensional (3-D) models incorporating ECM, aiming to replicate the cells' native environment. Little is known about the cellular changes that occur when moving from two-dimensional (2-D) to 3-D cell culture. This study compared the gene expression profiles of primary human lung fibroblasts from seven subjects with normal lung function, that were cultured for 24 h on 2-D collagen I-coated tissue culture plastic and in 3-D collagen I hydrogels, which are commonly used to mimic ECM in various models, from contraction assays to intricate organ-on-a-chip models. Comparing 3-D with 2-D cell culture, 6,771 differentially expressed genes (2,896 up, 3,875 down) were found; enriched gene sets within the downregulated genes, identified through Gene Set Enrichment Analysis and Ingenuity Pathway Analysis, were involved in the initiation of DNA replication which implied downregulation of fibroblast proliferation in 3-D. Observation of cells for 72 h in 2-D and 3-D environments confirmed the reduced progression through the cell cycle in 3-D. A focused analysis, examining the Hippo pathway and ECM-associated genes, showed differential patterns of gene expression in the 3-D versus 2-D culture. Altogether, the transcriptional response of fibroblasts cultured in 3-D indicated inhibition of proliferation, and alterations in Hippo and ECM pathways indicating a complete switch from proliferation to ECM remodeling.NEW & NOTEWORTHY With the introduction of complex three-dimensional (3-D) lung models, comes a need for understanding cellular behavior in these models. We compared gene expression profiles of human lung fibroblasts grown on two-dimensional (2-D) collagen I-coated surfaces with those in 3-D collagen I hydrogels. RNA sequencing and subsequent pathway analyses showed decreased proliferation, increased extracellular matrix (ECM) remodeling, and altered Hippo signaling and ECM deposition-related gene signatures. These findings highlight unique responses of fibroblasts in 3-D models.


Subject(s)
Extracellular Matrix , Lung , Humans , Extracellular Matrix/metabolism , Lung/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Cells, Cultured , Fibroblasts/metabolism , Hydrogels/metabolism
16.
EBioMedicine ; 98: 104883, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995465

ABSTRACT

BACKGROUND: Systemic sclerosis-interstitial lung disease (SSc-ILD) is the leading cause of death in patients with SSc. There is an unmet need for predictive biomarkers to identify patients with SSc at risk of ILD. Previous studies have shown that interferon (IFN) pathways may play a role in SSc. We assessed the use of C-X-C motif chemokine ligand 10 (CXCL10) as a predictive biomarker for new onset of ILD in patients with SSc. METHODS: One-hundred-sixty-five (Female, N = 130) patients with SSc (SSc-ILD, N = 41) and 13 (Female, N = 8) healthy controls were investigated retrospectively. CXCL10 protein levels were measured by ELISA. We performed log rank analysis with baseline CXCL10 serum levels. CXCL10 nanoString data from lung tissues obtained from transplanted patients with SSc-ILD were extracted. Fifteen (Female, N = 10) patients with SSc (SSc-ILD, N = 7) were recruited for bronchoalveolar lavage (BAL) procedure. Lung fibroblasts were treated with BAL-fluid or serum from patients with SSc with or without ILD. Inflammatory/fibrotic genes were assessed. FINDINGS: Serum CXCL10 levels were higher in patients with SSc-ILD compared to SSc patients without ILD [Median (IQR):126 pg/ml (66-282.5) vs. 78.5 pg/ml (50-122), P = 0.029, 95% CI: 1.5 × 10-6 to 0.4284]. Survival analysis showed that baseline CXCL10 levels >78.5 pg/ml have a 2.74-fold increased risk of developing new onset of ILD (Log-rank: P = 0.119) on follow-up. CXCL10 levels in BAL supernatant were not different in patients with SSc-ILD compared to SSc without ILD [76.1 pg/ml (7.2-120.8) vs. 22.3 pg/ml (12.1-43.7), P = 0.24, 95% CI: -19.5 to 100]. NanoString showed that CXCL10 mRNA expression was higher in inflammatory compared to fibrotic lung tissues [4.7 (4.2-5.6) vs. 4.3 (3.6-4.7), P = 0.029]. Fibroblasts treated with SSc-ILD serum or BAL fluids overexpressed CXCL10. INTERPRETATIONS: Clinical, transcriptomic, and in vitro data showed that CXCL10 is potentially involved in early SSc-ILD. More research is needed to confirm whether CXCL10 can be classified as a prospective biomarker to detect patients with SSc at higher risk of developing new onset ILD. FUNDING: This collaborative project is co-financed by the Ministry of Economic Affairs and Climate Policy of the Netherlands utilizing the PPP-allowance made available by the Top Sector Life Sciences & Health to stimulate public-private partnerships (PPP-2019_007). Part of this study is financially supported by Sanofi Genzyme (NL8921).


Subject(s)
Lung Diseases, Interstitial , Scleroderma, Systemic , Female , Humans , Biomarkers , Chemokine CXCL10/genetics , Gene Expression Profiling , Ligands , Lung , Lung Diseases, Interstitial/genetics , Observational Studies as Topic , Retrospective Studies , Scleroderma, Systemic/complications , Scleroderma, Systemic/genetics , Male
17.
Sci Rep ; 13(1): 19393, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938243

ABSTRACT

Abnormal deposition of extracellular matrix (ECM) in lung tissue is a characteristic of idiopathic pulmonary fibrosis (IPF). Increased collagen deposition is also accompanied by altered collagen organization. Collagen type XIV, a fibril-associated collagen, supports collagen fibril organization. Its status in IPF has not been described at the protein level yet. In this study, we utilized publicly available datasets for single-cell RNA-sequencing for characterizing collagen type XIV expression at the gene level. For protein level comparison, we applied immunohistochemical staining for collagen type XIV on lung tissue sections from IPF patients and compared it to lung tissue sections from never smoking and ex-smoking donors. Analyzing the relative amounts of collagen type XIV at the whole tissue level, as well as in parenchyma, airway wall and bronchial epithelium, we found consistently lower proportions of collagen type XIV in all lung tissue compartments across IPF samples. Our study suggests proportionally lower collagen type XIV in IPF lung tissues may have implications for the assembly of the ECM fibers potentially contributing to progression of fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/genetics , Extracellular Matrix , Fibril-Associated Collagens , Patients , Lung
18.
ERJ Open Res ; 9(6)2023 Nov.
Article in English | MEDLINE | ID: mdl-38020574

ABSTRACT

Introduction: A subset of COPD patients develops advanced disease with severe airflow obstruction, hyperinflation and extensive emphysema. We propose that the pathogenesis in these patients differs from mild-moderate COPD and is reflected by bronchial gene expression. The aim of the present study was to identify a unique bronchial epithelial gene signature for severe COPD patients. Methods: We obtained RNA sequencing data from bronchial brushes from 123 ex-smokers with severe COPD, 23 with mild-moderate COPD and 23 non-COPD controls. We identified genes specific to severe COPD by comparing severe COPD to non-COPD controls, followed by removing genes that were also differentially expressed between mild-moderate COPD and non-COPD controls. Next, we performed a pathway analysis on these genes and evaluated whether this signature is retained in matched nasal brushings. Results: We identified 219 genes uniquely differentially expressed in severe COPD. Interaction network analysis identified VEGFA and FN1 as the key genes with the most interactions. Genes were involved in extracellular matrix regulation, collagen binding and the immune response. Of interest were 10 genes (VEGFA, DCN, SPARC, COL6A2, MGP, CYR61, ANXA6, LGALS1, C1QA and C1QB) directly connected to fibronectin 1 (FN1). Most of these genes were lower expressed in severe COPD and showed the same effect in nasal brushings. Conclusions: We found a unique severe COPD bronchial gene signature with key roles for VEGFA and FN1, which was retained in the upper airways. This supports the hypothesis that severe COPD, at least partly, comprises a different pathology and supports the potential for biomarker development based on nasal brushes in COPD.

19.
Epigenetics ; 18(1): 2175522, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38016026

ABSTRACT

Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is highly expressed in smokers, but little is known about the molecular mechanism of UCHL1 in airway epithelium and its possible role in affecting extracellular matrix (ECM) remodelling in the underlying submucosa. Since cigarette smoking is a major cause of lung diseases, we studied its effect on UCHL1 expression and DNA methylation patterns in human bronchial epithelial cells, obtained after laser capture micro-dissection (LCM) or isolated from residual tracheal/main stem bronchial tissue. Targeted regulation of UCHL1 expression via CRISPR/dCas9 based-epigenetic editing was used to explore the function of UCHL1 in lung epithelium. Our results show that cigarette smoke extract (CSE) stimulated the expression of UCHL1 in vitro. The methylation status of the UCHL1 gene was negatively associated with UCHL1 transcription in LCM-obtained airway epithelium at specific sites. Treatment with a UCHL1 inhibitor showed that the TGF-ß1-induced upregulation of the ECM gene COL1A1 can be prevented by the inhibition of UCHL1 activity in cell lines. Furthermore, upon downregulation of UCHL1 by epigenetic editing using CRISPR/dCas-EZH2, mRNA expression of COL1A1 and fibronectin was reduced. In conclusion, we confirmed higher UCHL1 expression in current smokers compared to non- and ex-smokers, and induced downregulation of UCHL1 by epigenetic editing. The subsequent repression of genes encoding ECM proteins suggest a role for UCHL1 as a therapeutic target in fibrosis-related disease.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , Bronchi , Collagen/metabolism , Epithelial Cells , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
20.
Am J Respir Crit Care Med ; 208(10): 1075-1087, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37708400

ABSTRACT

Rationale: IL-33 is a proinflammatory cytokine thought to play a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). A recent clinical trial using an anti-IL-33 antibody showed a reduction in exacerbation and improved lung function in ex-smokers but not current smokers with COPD. Objectives: This study aimed to understand the effects of smoking status on IL-33. Methods: We investigated the association of smoking status with the level of gene expression of IL-33 in the airways in eight independent transcriptomic studies of lung airways. Additionally, we performed Western blot analysis and immunohistochemistry for IL-33 in lung tissue to assess protein levels. Measurements and Main Results: Across the bulk RNA-sequencing datasets, IL-33 gene expression and its signaling pathway were significantly lower in current versus former or never-smokers and increased upon smoking cessation (P < 0.05). Single-cell sequencing showed that IL-33 is predominantly expressed in resting basal epithelial cells and decreases during the differentiation process triggered by smoke exposure. We also found a higher transitioning of this cellular subpopulation into a more differentiated cell type during chronic smoking, potentially driving the reduction of IL-33. Protein analysis demonstrated lower IL-33 levels in lung tissue from current versus former smokers with COPD and a lower proportion of IL-33-positive basal cells in current versus ex-smoking controls. Conclusions: We provide strong evidence that cigarette smoke leads to an overall reduction in IL-33 expression in transcriptomic and protein level, and this may be due to the decrease in resting basal cells. Together, these findings may explain the clinical observation that a recent antibody-based anti-IL-33 treatment is more effective in former than current smokers with COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Smokers , Humans , Interleukin-33/genetics , Smoking/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL